Skip to content

Commit

Permalink
Merge pull request #128 from aergus/is-equiv-map-of-fibers-is-equiv-m…
Browse files Browse the repository at this point in the history
…ap-of-maps

Equivalences of maps induce equivalences of fibers
  • Loading branch information
Emily Riehl authored Oct 22, 2023
2 parents 8d5b0be + 923cac5 commit 2aceb9d
Show file tree
Hide file tree
Showing 2 changed files with 130 additions and 0 deletions.
21 changes: 21 additions & 0 deletions src/hott/10-trivial-fibrations.rzk.md
Original file line number Diff line number Diff line change
Expand Up @@ -268,6 +268,27 @@ the fibers.
( fubini-Σ A B (\ a b → f a = b))
```

The inverse of this equivalence is given (definitionally!) by the projection
`\ (_ , (a , _)) → a`.

```rzk
#def compute-left-inverse-equiv-domain-sum-of-fibers
( A B : U)
( f : A → B)
( (b , (a , p)) : (Σ (b : B) , fib A B f b))
: ( first (first ( second (equiv-domain-sum-of-fibers A B f))) (b , (a , p))
= a)
:= refl
#def compute-right-inverse-equiv-domain-sum-of-fibers
( A B : U)
( f : A → B)
( (b , (a , p)) : (Σ (b : B) , fib A B f b))
: ( first (second ( second (equiv-domain-sum-of-fibers A B f))) (b , (a , p))
= a)
:= refl
```

## Equivalence between fibers in equivalent domains

As an application of the main theorem, we show that precomposing with an
Expand Down
109 changes: 109 additions & 0 deletions src/hott/11-homotopy-pullbacks.rzk.md
Original file line number Diff line number Diff line change
Expand Up @@ -617,3 +617,112 @@ The relative product of `f : B → A` with a map `Unit → A` corresponding to
, is-equiv-identity Unit))
```

## Applications

### Maps induced on fibers

As an application of `#!rzk is-homotopy-cartesian-is-horizontal-equiv`, we show
that an equivalence of maps induces an equivalence of fibers at each base point.

```rzk
#section is-equiv-map-of-fibers-is-equiv-map-of-maps
#variables A' A : U
#variable α : A' → A
#variables B' B : U
#variable β : B' → B
#variable map-of-maps-α-β : map-of-maps A' A α B' B β
-- To avoid polluting the global namespace, we add a random suffix to
-- identifiers that are only supposed to be used in this section.
#def s'-c4XT uses (A α B β) : A' → B' := first (first map-of-maps-α-β)
#def s-c4XT uses (A' α B' β) : A → B := second (first map-of-maps-α-β)
#def map-of-fibers-map-of-maps
( a : A)
( (a', p) : fib A' A α a)
: fib B' B β (s-c4XT a)
:=
( s'-c4XT a'
, ( concat B (β (s'-c4XT a')) (s-c4XT (α a')) (s-c4XT a))
( second map-of-maps-α-β a')
( ap A B (α a') a s-c4XT p))
#def map-of-sums-of-fibers-map-of-maps uses (map-of-maps-α-β)
( (a, u) : Σ (a : A), fib A' A α a)
: Σ (b : B), fib B' B β b
:= (s-c4XT a, map-of-fibers-map-of-maps a u)
#def sums-of-fibers-to-domains-map-of-maps uses (map-of-maps-α-β)
: map-of-maps
( Σ (a : A), fib A' A α a)
( Σ (b : B), fib B' B β b)
( map-of-sums-of-fibers-map-of-maps)
( A')
( B')
( s'-c4XT)
:=
((( \ (_, (a', _)) → a'), ( \ (_, (b', _)) → b')), \ (a, u) → refl)
#variable is-equiv-s' : is-equiv A' B' s'-c4XT
#def is-equiv-map-of-sums-of-fibers-is-equiv-map-of-domains
uses (map-of-maps-α-β is-equiv-s')
: is-equiv
( Σ (a : A), fib A' A α a)
( Σ (b : B), fib B' B β b)
( map-of-sums-of-fibers-map-of-maps)
:=
is-equiv-equiv-is-equiv
( Σ (a : A), fib A' A α a)
( Σ (b : B), fib B' B β b)
( map-of-sums-of-fibers-map-of-maps)
( A')
( B')
( s'-c4XT)
( sums-of-fibers-to-domains-map-of-maps)
( second
( ( inv-equiv A' (Σ (a : A), fib A' A α a))
( equiv-domain-sum-of-fibers A' A α)))
( second
( ( inv-equiv B' (Σ (b : B), fib B' B β b))
( equiv-domain-sum-of-fibers B' B β)))
( is-equiv-s')
#variable is-equiv-s : is-equiv A B s-c4XT
#def is-equiv-map-of-fibers-is-equiv-map-of-maps
uses (map-of-maps-α-β is-equiv-s is-equiv-s')
: (a : A)
→ is-equiv
( fib A' A α a)
( fib B' B β (s-c4XT a))
( map-of-fibers-map-of-maps a)
:=
is-homotopy-cartesian-is-horizontal-equiv
( A)
( fib A' A α)
( B)
( fib B' B β)
( s-c4XT)
( map-of-fibers-map-of-maps)
( is-equiv-s)
( is-equiv-map-of-sums-of-fibers-is-equiv-map-of-domains)
#end is-equiv-map-of-fibers-is-equiv-map-of-maps
#def Equiv-of-fibers-Equiv-of-maps
( A' A : U)
( α : A' → A)
( B' B : U)
( β : B' → B)
( (((s', s), η), (is-equiv-s, is-equiv-s')) : Equiv-of-maps A' A α B' B β)
(a : A)
: Equiv (fib A' A α a) (fib B' B β (s a))
:=
( map-of-fibers-map-of-maps A' A α B' B β ((s', s), η) a
, ( is-equiv-map-of-fibers-is-equiv-map-of-maps A' A α B' B β ((s', s), η))
( is-equiv-s)
( is-equiv-s')
( a))
```

0 comments on commit 2aceb9d

Please sign in to comment.