Skip to content

Commit

Permalink
cosmetic edits
Browse files Browse the repository at this point in the history
  • Loading branch information
emilyriehl committed Nov 23, 2023
1 parent bff3555 commit a1ee8ee
Show file tree
Hide file tree
Showing 4 changed files with 20 additions and 22 deletions.
12 changes: 6 additions & 6 deletions src/hott/02-homotopies.rzk.md
Original file line number Diff line number Diff line change
Expand Up @@ -145,12 +145,12 @@ $K^{-1} \cdot H \sim \text{refl-htpy}_{g}$
: comp A B C h f = comp A B C k g
:=
ind-path (A → B) f (\ g' p' → comp A B C h f = comp A B C k g')
( ind-path (B → C) h (\ k' q' → comp A B C h f = comp A B C k' f)
( refl)
( k)
( q))
( g)
( p)
( ind-path (B → C) h (\ k' q' → comp A B C h f = comp A B C k' f)
( refl)
( k)
( q))
( g)
( p)
```

## Naturality
Expand Down
12 changes: 6 additions & 6 deletions src/hott/03-equivalences.rzk.md
Original file line number Diff line number Diff line change
Expand Up @@ -821,9 +821,9 @@ identifications. This defines `#!rzk eq-htpy` to be the retraction to
: (comp A B A (π₁ (π₁ is-equiv-f)) f) = (identity A)
:=
eq-htpy A (\ x' → A)
( comp A B A (π₁ (π₁ is-equiv-f)) f)
( identity A)
( π₂ (π₁ is-equiv-f))
( comp A B A (π₁ (π₁ is-equiv-f)) f)
( identity A)
( π₂ (π₁ is-equiv-f))
#def right-cancel-is-equiv uses (funext)
( A B : U)
Expand All @@ -832,9 +832,9 @@ identifications. This defines `#!rzk eq-htpy` to be the retraction to
: (comp B A B f (π₁ (π₂ is-equiv-f))) = (identity B)
:=
eq-htpy B (\ x' → B)
( comp B A B f (π₁ (π₂ is-equiv-f)))
( identity B)
( π₂ (π₂ is-equiv-f))
( comp B A B f (π₁ (π₂ is-equiv-f)))
( identity B)
( π₂ (π₂ is-equiv-f))
```

Using function extensionality, a fiberwise equivalence defines an equivalence of
Expand Down
10 changes: 4 additions & 6 deletions src/simplicial-hott/03-extension-types.rzk.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,10 +10,8 @@ This is a literate `rzk` file:

## Prerequisites

- `hott/4-equivalences.rzk` — contains the definitions of `#!rzk Equiv` and
- `hott/03-equivalences.rzk.md` — contains the definitions of `#!rzk Equiv` and
`#!rzk comp-equiv`
- the file `hott/4-equivalences.rzk` relies in turn on the previous files in
`hott/`

## Extension up to homotopy

Expand Down Expand Up @@ -371,10 +369,10 @@ For each of these we provide a corresponding functorial instance
( (t : ψ) → (Σ (x : X t) , Y t x) [ϕ t ↦ (a t , b t)])
:=
inv-equiv
( (t : ψ) → (Σ (x : X t) , Y t x) [ϕ t ↦ (a t , b t)])
( Σ ( f : ((t : ψ) → X t [ϕ t ↦ a t]))
( (t : ψ) → (Σ (x : X t) , Y t x) [ϕ t ↦ (a t , b t)])
( Σ ( f : ((t : ψ) → X t [ϕ t ↦ a t]))
, ( (t : ψ) → Y t (f t) [ϕ t ↦ b t]))
( axiom-choice I ψ ϕ X Y a b)
( axiom-choice I ψ ϕ X Y a b)
```

## Composites and unions of cofibrations
Expand Down
8 changes: 4 additions & 4 deletions src/simplicial-hott/06-2cat-of-segal-types.rzk.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,10 +10,10 @@ This is a literate `rzk` file:

## Prerequisites

- `3-simplicial-type-theory.md` — We rely on definitions of simplicies and their
subshapes.
- `4-extension-types.md` — We use extension extensionality.
- `5-segal-types.md` - We use the notion of hom types.
- `02-simplicial-type-theory.rzk.md` — We rely on definitions of simplicies and
their subshapes.
- `03-extension-types.rzk.md` — We use extension extensionality.
- `05-segal-types.rzk.md` - We use the notion of hom types.

Some of the definitions in this file rely on function extensionality and
extension extensionality:
Expand Down

0 comments on commit a1ee8ee

Please sign in to comment.