Skip to content

Commit

Permalink
typo fixed
Browse files Browse the repository at this point in the history
  • Loading branch information
emilyriehl committed Nov 23, 2023
1 parent 443e3f8 commit cd438ab
Showing 1 changed file with 43 additions and 9 deletions.
52 changes: 43 additions & 9 deletions src/simplicial-hott/07-discrete.rzk.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,9 +13,9 @@ This is a literate `rzk` file:
- `hott/01-paths.rzk.md` - We require basic path algebra.
- `hott/04-equivalences.rzk.md` - We require the notion of equivalence between
types.
- `03-simplicial-type-theory.rzk.md` — We rely on definitions of simplicies and
- `02-simplicial-type-theory.rzk.md` — We rely on definitions of simplicies and
their subshapes.
- `04-extension-types.rzk.md` — We use extension extensionality.
- `03-extension-types.rzk.md` — We use extension extensionality.
- `05-segal-types.rzk.md` - We use the notion of hom types.

Some of the definitions in this file rely on function extensionality and
Expand Down Expand Up @@ -252,8 +252,7 @@ of discrete types is discrete.
```

By extension extensionality, an extension type into a family of discrete types
is discrete. Since `#!rzk equiv-extensions-BOT-equiv` considers total extension
types only, extending from `#!rzk BOT`, that's all we prove here for now.
is discrete.

```rzk
#def equiv-hom-eq-extension-type-is-discrete uses (extext)
Expand All @@ -270,13 +269,11 @@ types only, extending from `#!rzk BOT`, that's all we prove here for now.
( (t : ψ) → hom (A t) (f t) (g t))
( hom ((t : ψ) → A t) f g)
( equiv-ExtExt extext I ψ (\ _ → BOT) A (\ _ → recBOT) f g)
( equiv-extensions-BOT-equiv
( extext)
( I)
( ψ)
( equiv-extensions-equiv extext I ψ (\ _ → BOT)
( \ t → f t = g t)
( \ t → hom (A t) (f t) (g t))
( \ t → (hom-eq (A t) (f t) (g t) , (is-discrete-A t (f t) (g t)))))
( \ t → (hom-eq (A t) (f t) (g t) , (is-discrete-A t (f t) (g t))))
( \ _ → recBOT))
( fubini
( I)
( 2)
Expand Down Expand Up @@ -1141,3 +1138,40 @@ Finally, we conclude:
: is-segal A
:= is-contr-hom2-is-discrete A is-discrete-A
```

## Naturality for hom-eq

`#!rzk hom-eq` commute with `#!rzk ap-hom`.

```rzk
#def hom-eq-naturality
( A B : U)
( f : A → B)
( x y : A)
( p : x = y)
:
comp (x = y) (hom A x y) (hom B (f x) (f y))
( ap-hom A B f x y)
( hom-eq A x y)
( p)
=
comp (x = y) ((f x) = (f y)) (hom B (f x) (f y))
( hom-eq B (f x) (f y))
( ap A B x y f)
( p)
:=
ind-path A x
( \ y' p' →
comp (x = y') (hom A x y') (hom B (f x) (f y'))
( ap-hom A B f x y')
( hom-eq A x y')
( p')
=
comp (x = y') ((f x) = (f y')) (hom B (f x) (f y'))
( hom-eq B (f x) (f y'))
( ap A B x y' f)
( p'))
( functors-pres-id extext A B f x)
( y)
( p)
```

0 comments on commit cd438ab

Please sign in to comment.