Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Uniqueness of adjunction data #131

Merged
merged 12 commits into from
Oct 27, 2023
17 changes: 15 additions & 2 deletions src/hott/05-sigma.rzk.md
Original file line number Diff line number Diff line change
Expand Up @@ -536,7 +536,20 @@ This is the dependent version of the currying equivalence.
( B : A → U)
( C : (x : A) → B x → U)
: Equiv
( (x : A) → Σ (y : B x) , C x y)
( Σ ( f : (x : A) → B x) , (x : A) → C x (f x))
( (x : A) → Σ (y : B x) , C x y)
( Σ ( f : (x : A) → B x) , (x : A) → C x (f x))
:= (choice A B C , is-equiv-choice A B C)

#def inv-equiv-choice
( A : U)
( B : A → U)
( C : (x : A) → B x → U)
: Equiv
( Σ ( f : (x : A) → B x) , (x : A) → C x (f x))
( (x : A) → Σ (y : B x) , C x y)
:=
inv-equiv
( (x : A) → Σ (y : B x) , C x y)
( Σ ( f : (x : A) → B x) , (x : A) → C x (f x))
( equiv-choice A B C)
```
14 changes: 14 additions & 0 deletions src/simplicial-hott/05-segal-types.rzk.md
Original file line number Diff line number Diff line change
Expand Up @@ -1182,6 +1182,20 @@ We conclude that Segal composition is associative.
( left-associative-is-segal A is-segal-A w x y z f g h)
( right-associative-is-segal A is-segal-A w x y z f g h)

#def rev-associative-is-segal uses (extext)
( A : U)
( is-segal-A : is-segal A)
( w x y z : A)
( f : hom A w x)
( g : hom A x y)
( h : hom A y z)
: ( comp-is-segal A is-segal-A w x z f (comp-is-segal A is-segal-A x y z g h)) =
( comp-is-segal A is-segal-A w y z (comp-is-segal A is-segal-A w x y f g) h)
:=
rev (hom A w z)
( comp-is-segal A is-segal-A w y z (comp-is-segal A is-segal-A w x y f g) h)
( comp-is-segal A is-segal-A w x z f (comp-is-segal A is-segal-A x y z g h))
( associative-is-segal A is-segal-A w x y z f g h)

#def postcomp-is-segal
( A : U)
Expand Down
24 changes: 24 additions & 0 deletions src/simplicial-hott/06-2cat-of-segal-types.rzk.md
Original file line number Diff line number Diff line change
Expand Up @@ -101,6 +101,30 @@ Preservation of composition requires the Segal hypothesis.
( ap-hom2 A B F x y z f g
( comp-is-segal A is-segal-A x y z f g)
( witness-comp-is-segal A is-segal-A x y z f g))

#def rev-functors-pres-comp
( A B : U)
( is-segal-A : is-segal A)
( is-segal-B : is-segal B)
( F : A → B)
( x y z : A)
( f : hom A x y)
( g : hom A y z)
:
( ap-hom A B F x z (comp-is-segal A is-segal-A x y z f g))
=
( comp-is-segal B is-segal-B
( F x) (F y) (F z)
( ap-hom A B F x y f)
( ap-hom A B F y z g))
:=
rev (hom B (F x) (F z))
( comp-is-segal B is-segal-B
( F x) (F y) (F z)
( ap-hom A B F x y f)
( ap-hom A B F y z g))
( ap-hom A B F x z (comp-is-segal A is-segal-A x y z f g))
( functors-pres-comp A B is-segal-A is-segal-B F x y z f g)
```

## Natural transformations
Expand Down
21 changes: 20 additions & 1 deletion src/simplicial-hott/08-covariant.rzk.md
Original file line number Diff line number Diff line change
Expand Up @@ -1336,6 +1336,25 @@ equivalence. This follows from the fact that the total types (summed over
v
```

We compute covariant transport of a substitution.

```rzk
#def compute-covariant-transport-of-substitution
( A B : U)
( C : A → U)
( is-covariant-C : is-covariant A C)
( g : B → A)
( x y : B)
( f : hom B x y)
( u : C (g x))
: covariant-transport B x y f (\ b → C (g b))
( is-covariant-substitution-is-covariant A B C is-covariant-C g) u
=
covariant-transport A (g x) (g y) (ap-hom B A g x y f) C
( is-covariant-C) u
:= refl
```

## Covariant functoriality

The covariant transport operation defines a covariantly functorial action of
Expand Down Expand Up @@ -2198,7 +2217,7 @@ The fibers of a covariant fibration over a Segal type are discrete types.
( v))
```

In a segal type, covariant hom families are covariant,hence representable homs
In a Segal type, covariant hom families are covariant, hence representable homs
are discrete.

```rzk title="RS17, Corollary 8.19"
Expand Down
32 changes: 32 additions & 0 deletions src/simplicial-hott/10-rezk-types.rzk.md
Original file line number Diff line number Diff line change
Expand Up @@ -742,6 +742,38 @@ map from `#!rzk x = y` to `#!rzk Iso A is-segal-A x y` is an equivalence.
is-equiv (x = y) (Iso A is-segal-A x y) (iso-eq A is-segal-A x y)
```

The inverse to `#!rzk iso-eq` for a Rezk type.

```rzk
#def eq-iso-is-rezk
( A : U)
( is-rezk-A : is-rezk A)
( x y : A)
: Iso A (first is-rezk-A) x y → x = y
:=
section-is-equiv (x = y) (Iso A (first is-rezk-A) x y)
( iso-eq A (first is-rezk-A) x y)
( ( second is-rezk-A) x y)

#def iso-eq-iso-is-rezk
( A : U)
( is-rezk-A : is-rezk A)
( x y : A)
( (e, is-iso-e) : Iso A (first is-rezk-A) x y)
: first (iso-eq A (first is-rezk-A) x y (eq-iso-is-rezk A is-rezk-A x y (e, is-iso-e))) = e
:=
first-path-Σ
( hom A x y)
( is-iso-arrow A (first is-rezk-A) x y)
( iso-eq A (first is-rezk-A) x y
( eq-iso-is-rezk A is-rezk-A x y (e, is-iso-e)))
( (e, is-iso-e))
( ( second
( has-section-is-equiv (x = y) (Iso A (first is-rezk-A) x y)
( iso-eq A (first is-rezk-A) x y)
( ( second is-rezk-A) x y))) (e, is-iso-e))
```

The following results show how `#!rzk iso-eq` mediates between the
type-theoretic operations on paths and the category-theoretic operations on
arrows.
Expand Down
Loading