Skip to content

saebyn/munkres-cpp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

munkres-cpp

build codecov.io

An implementation of the Kuhn–Munkres algorithm.

License

Copyright (c) 2007-2013 John Weaver and contributors.
Licensed under the GPLv2. See the file COPYING for details.

Requirements

For use:

  • C++ compiler with C++11 support.

For development:

Portability

The project is developed under the GNU/Linux OS with the gcc compiler and usually not tested under other OSs and compilers. But the project does not use OS or compiler specific features (types, attributes, etc) so it's expected that the project will be normally work under other platforms.

Usage

These steps are the easiest way to get started:

  • download: $ git clone https://github.com/saebyn/munkres-cpp.git && cd munkres-cpp
  • build: $ mkdir build && cd build && cmake .. && make
  • install: $ make install

Example

TBD

Development

For development purpose, the project implements a variety of build targets. All of them help to continuously check correctness of algorithm implementation, performance, memory management, etc. Pass the-DMUNKRESCPP_DEVEL_MODE=ON option to CMake to enable development mode.

Running unit tests:

Build and execute the test suite with these commands:

$ git clone https://github.com/saebyn/munkres-cpp.git
$ cd munkres-cpp
$ mkdir build && cd build
$ cmake -DCMAKE_BUILD_TYPE=Debug -DMUNKRESCPP_DEVEL_MODE=ON ..
$ make tests
$ tests/munkrestest

Running code coverage analyzer:

You must compile unit tests in debug mode to get a correct code coverage report.

$ <build and Launch unit tests>
$ make coverage
$ firefox coverage/index.html &

Running the memory profiler:

Since the unit tests call all functions which implement the algorithm, using valgrind on the unit test runner is an appropriate way to check memory management.

$ <build unit tests>
$ valgrind tests/munkrestest

Running the microbenchmarks:

First, build them:

$ git clone https://github.com/saebyn/munkres-cpp.git
$ cd munkres-cpp
$ mkdir build && cd build
$ cmake -DCMAKE_BUILD_TYPE=Release -DMUNKRESCPP_DEVEL_MODE=ON ..
$ make benchmarks

To get comparable results it's required to generate the data set wich will be used for all benchmarks:

$ benchmarks/tools/generator/matrixgenerator.bin {dim_1 dim_2 ... dim_n}

Where every dim_x parameter generates a square matrix with dim_x dimension. To launch microbenchmarks, perform the following commands:

$ benchmarks/tests/munkresbenchmark_celero.bin
$ benchmarks/tests/munkresbenchmark_google.bin
$ benchmarks/tests/munkresbenchmark_hayai.bin
$ benchmarks/tests/munkresbenchmark_rdtsc.bin

Getting performance profiling:

$ <build microbenchmarks and generate data set>
$ benchmarks/tests/munkresbenchmark_gprof.bin
$ gprof benchmarks/tests/munkresbenchmark_gprof.bin gmon.out -p -b

Running the static code analyzer:

$ make cppcheck

Running the code formatter:

TBD

Bug reporting and work to be done

Check the issues list at GitHub.