Skip to content

Commit

Permalink
Replace is_equivalent in BrandtModule
Browse files Browse the repository at this point in the history
  • Loading branch information
S17A05 committed Feb 3, 2024
1 parent 5fd6b88 commit 0690bd9
Showing 1 changed file with 4 additions and 4 deletions.
8 changes: 4 additions & 4 deletions src/sage/modular/quatalg/brandt.py
Original file line number Diff line number Diff line change
Expand Up @@ -93,7 +93,7 @@
if there exists an element `\alpha \in I \overline{J}` such
`N(\alpha)=N(I)N(J)`.
``is_equivalent(I,J)`` returns true if `I` and `J` are equivalent. This
``is_right_equivalent(I,J)`` returns true if `I` and `J` are equivalent. This
method first compares the theta series of `I` and `J`. If they are the
same, it computes the theta series of the lattice `I\overline(J)`. It
returns true if the `n^{th}` coefficient of this series is nonzero
Expand Down Expand Up @@ -1193,7 +1193,7 @@ def _compute_hecke_matrix_directly(self, n, B=None, sparse=False):
T[r, v[0]] += 1
else:
for i in v:
if C[i].is_equivalent(J, 0):
if C[i].is_right_equivalent(J, 0):
T[r, i] += 1
break
return T
Expand Down Expand Up @@ -1325,7 +1325,7 @@ def right_ideals(self, B=None):
sage: B = BrandtModule(1009)
sage: Is = B.right_ideals()
sage: n = len(Is)
sage: prod(not Is[i].is_equivalent(Is[j]) for i in range(n) for j in range(i))
sage: prod(not Is[i].is_right_equivalent(Is[j]) for i in range(n) for j in range(i))
1
"""
p = self._smallest_good_prime()
Expand Down Expand Up @@ -1353,7 +1353,7 @@ def right_ideals(self, B=None):
J_theta = tuple(J.theta_series_vector(B))
if J_theta in ideals_theta:
for K in ideals_theta[J_theta]:
if J.is_equivalent(K, 0):
if J.is_right_equivalent(K, 0):
is_new = False
break
if is_new:
Expand Down

0 comments on commit 0690bd9

Please sign in to comment.