Skip to content

Commit

Permalink
clean up the doc
Browse files Browse the repository at this point in the history
  • Loading branch information
fchapoton committed Nov 10, 2024
1 parent 85a4b3e commit 073a0e8
Showing 1 changed file with 3 additions and 8 deletions.
11 changes: 3 additions & 8 deletions src/sage/rings/polynomial/q_integer_valued_polynomials.py
Original file line number Diff line number Diff line change
Expand Up @@ -93,9 +93,8 @@ class QuantumValuedPolynomialRing(UniqueRepresentation, Parent):
Quantum-valued polynomial rings are commutative and associative
algebras, with a basis indexed by integers.
The basis used here is given by `B[i] = \binom{i+n}{i}` for `i \in \NN`.
There is a nice formula for the product, see [HaHo2017]_.
This is endowed with two bases, named ``B`` or ``Binomial``
and ``S`` or ``Shifted``⋅
INPUT:
Expand Down Expand Up @@ -813,8 +812,6 @@ def h_vector(self):
.. SEEALSO:: :meth:`h_polynomial`, :meth:`fraction`
changement de base vers les (binomial(x+i,d))_{i=0..d}
EXAMPLES::
sage: A = QuantumValuedPolynomialRing(ZZ).S()
Expand Down Expand Up @@ -847,8 +844,6 @@ def h_polynomial(self):
.. SEEALSO:: :meth:`h_vector`, :meth:`fraction`
peut-etre pas dans le bon sens ?
EXAMPLES::
sage: A = QuantumValuedPolynomialRing(ZZ).S()
Expand Down Expand Up @@ -943,7 +938,7 @@ def product_on_basis(self, n1, n2):
- ``n1``, ``n2`` -- integers
The formula is taken from Theorem 3.4 in Harman-Hopkins.
The formula is taken from Theorem 3.4 in [HaHo2017]_.
EXAMPLES::
Expand Down

0 comments on commit 073a0e8

Please sign in to comment.