Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

sage.categories: Update # needs #38733

Merged
merged 3 commits into from
Oct 12, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 14 additions & 6 deletions src/sage/categories/finite_dimensional_algebras_with_basis.py
Original file line number Diff line number Diff line change
Expand Up @@ -145,6 +145,7 @@ def radical_basis(self):
We compute the radical basis in a subalgebra using
the inherited product::

sage: # needs sage.modules
sage: scoeffs = {('a','e'): {'a':1}, ('b','e'): {'a':1, 'b':1},
....: ('c','d'): {'a':1}, ('c','e'): {'c':1}}
sage: L.<a,b,c,d,e> = LieAlgebra(QQ, scoeffs)
Expand All @@ -155,14 +156,14 @@ def radical_basis(self):

TESTS::

sage: A = KleinFourGroup().algebra(GF(2)) # needs sage.groups sage.modules
sage: A.radical_basis() # needs sage.groups sage.modules
sage: # needs sage.groups sage.modules
sage: A = KleinFourGroup().algebra(GF(2))
sage: A.radical_basis()
(() + (1,2)(3,4), (3,4) + (1,2)(3,4), (1,2) + (1,2)(3,4))

sage: A = KleinFourGroup().algebra(QQ, category=Monoids()) # needs sage.groups sage.modules
sage: A.radical_basis.__module__ # needs sage.groups sage.modules
sage: A = KleinFourGroup().algebra(QQ, category=Monoids())
sage: A.radical_basis.__module__
'sage.categories.finite_dimensional_algebras_with_basis'
sage: A.radical_basis() # needs sage.groups sage.modules
sage: A.radical_basis()
()
"""
F = self.base_ring()
Expand Down Expand Up @@ -421,6 +422,7 @@ def subalgebra(self, gens, category=None, *args, **opts):

EXAMPLES::

sage: # needs sage.modules
sage: scoeffs = {('a','e'): {'a':1}, ('b','e'): {'a':1, 'b':1},
....: ('c','d'): {'a':1}, ('c','e'): {'c':1}}
sage: L.<a,b,c,d,e> = LieAlgebra(QQ, scoeffs)
Expand All @@ -429,6 +431,7 @@ def subalgebra(self, gens, category=None, *args, **opts):
sage: A.dimension()
7

sage: # needs sage.modules
sage: L.<x,y,z> = LieAlgebra(GF(3), {('x','z'): {'x':1, 'y':1}, ('y','z'): {'y':1}})
sage: MS = MatrixSpace(L.base_ring(), L.dimension())
sage: gens = [b.adjoint_matrix() for b in L.basis()]
Expand Down Expand Up @@ -473,6 +476,7 @@ def ideal_submodule(self, gens, side='left', category=None, *args, **opts):

EXAMPLES::

sage: # needs sage.modules
sage: scoeffs = {('a','e'): {'a':1}, ('b','e'): {'a':1, 'b':1},
....: ('c','d'): {'a':1}, ('c','e'): {'c':1}}
sage: L.<a,b,c,d,e> = LieAlgebra(QQ, scoeffs)
Expand Down Expand Up @@ -1537,18 +1541,21 @@ def simple_module_parameterization(self):

EXAMPLES::

sage: # needs sage.modules
sage: TL = TemperleyLiebAlgebra(5, 30, QQ) # semisimple
sage: len(TL.radical_basis())
0
sage: TL.simple_module_parameterization()
(1, 3, 5)

sage: # needs sage.modules
sage: TL = TemperleyLiebAlgebra(5, 1, QQ) # not semisimple
sage: len(TL.radical_basis())
24
sage: TL.simple_module_parameterization()
(1, 3, 5)

sage: # needs sage.modules
sage: TL = TemperleyLiebAlgebra(6, 30, QQ) # semisimple
sage: all(TL.cell_module(la).dimension()
....: == TL.cell_module(la).simple_module().dimension()
Expand All @@ -1557,6 +1564,7 @@ def simple_module_parameterization(self):
sage: TL.simple_module_parameterization()
(0, 2, 4, 6)

sage: # needs sage.modules
sage: TL = TemperleyLiebAlgebra(6, 0, QQ) # not semisimple
sage: TL.simple_module_parameterization()
(2, 4, 6)
Expand Down
2 changes: 2 additions & 0 deletions src/sage/categories/semigroups.py
Original file line number Diff line number Diff line change
Expand Up @@ -511,6 +511,7 @@ def representation(self, module, on_basis, side='left', *args, **kwargs):

EXAMPLES::

sage: # needs sage.groups
sage: G = CyclicPermutationGroup(3)
sage: M = algebras.Exterior(QQ, 'x', 3)
sage: def on_basis(g, m): # cyclically permute generators
Expand Down Expand Up @@ -1059,6 +1060,7 @@ def representation(self, module, on_basis, side='left', *args, **kwargs):

EXAMPLES::

sage: # needs sage.groups
sage: G = groups.permutation.Dihedral(5)
sage: CFM = CombinatorialFreeModule(GF(2), [1, 2, 3, 4, 5])
sage: A = G.algebra(GF(2))
Expand Down
5 changes: 5 additions & 0 deletions src/sage/categories/triangular_kac_moody_algebras.py
Original file line number Diff line number Diff line change
Expand Up @@ -215,6 +215,7 @@ def _triangular_key(self, x):

EXAMPLES::

sage: # needs sage.combinat sage.modules
sage: L = lie_algebras.sl(QQ, 3)
sage: La = L.cartan_type().root_system().weight_lattice().fundamental_weights()
sage: sorted(L.basis().keys(), key=L._basis_key)
Expand Down Expand Up @@ -352,6 +353,7 @@ def _transpose_basis_mapping(self):

EXAMPLES::

sage: # needs sage.combinat sage.modules
sage: g = LieAlgebra(QQ, cartan_type=['A', 2])
sage: g._transpose_basis_mapping
{-alpha[1]: alpha[1],
Expand Down Expand Up @@ -384,6 +386,7 @@ def _transpose_on_basis(self, m):

EXAMPLES::

sage: # needs sage.combinat sage.modules
sage: g = LieAlgebra(QQ, cartan_type=['B', 2])
sage: B = g.basis()
sage: [(B[k], g._transpose_on_basis(k)) for k in B.keys()]
Expand All @@ -407,6 +410,7 @@ def transpose(self):

EXAMPLES::

sage: # needs sage.combinat sage.modules
sage: g = LieAlgebra(QQ, cartan_type=['B', 2])
sage: g.transpose
Generic endomorphism of Lie algebra of ['B', 2] in the Chevalley basis
Expand All @@ -425,6 +429,7 @@ def transpose(self):

EXAMPLES::

sage: # needs sage.combinat sage.modules
sage: g = LieAlgebra(QQ, cartan_type=['G', 2])
sage: for b in g.basis():
....: for bp in g.basis():
Expand Down
Loading