Skip to content
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions src/doc/en/thematic_tutorials/group_theory.rst
Original file line number Diff line number Diff line change
Expand Up @@ -978,6 +978,7 @@ to do this. The symmetric group on 7 symbols, `S_7`, has order
`7! = 5040` and is divisible by `2^4 = 16`. Let's find one example
of a subgroup of permutations on 4 symbols with order 16::

sage: # optional - internet
sage: G = SymmetricGroup(7)
sage: subgroups = G.conjugacy_classes_subgroups()
sage: list(map(order, subgroups))
Expand Down
2 changes: 1 addition & 1 deletion src/sage/combinat/designs/incidence_structures.py
Original file line number Diff line number Diff line change
Expand Up @@ -1865,7 +1865,7 @@ def automorphism_group(self):
sage: P = designs.DesarguesianProjectivePlaneDesign(2); P
(7,3,1)-Balanced Incomplete Block Design
sage: G = P.automorphism_group()
sage: G.is_isomorphic(PGL(3,2))
sage: G.is_isomorphic(PGL(3,2)) # optional - internet
True
sage: G
Permutation Group with generators [...]
Expand Down
2 changes: 1 addition & 1 deletion src/sage/graphs/bliss.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -752,7 +752,7 @@ cpdef automorphism_group(G, partition=None, use_edge_labels=True) noexcept:
sage: G = graphs.HeawoodGraph()
sage: p = G.bipartite_sets()
sage: A = G.automorphism_group(partition=[list(p[0]), list(p[1])])
sage: automorphism_group(G, partition=p).is_isomorphic(A)
sage: automorphism_group(G, partition=p).is_isomorphic(A) # optional - internet
True

sage: G = graphs.CompleteMultipartiteGraph([5, 7, 11])
Expand Down
2 changes: 1 addition & 1 deletion src/sage/graphs/generic_graph.py
Original file line number Diff line number Diff line change
Expand Up @@ -24700,7 +24700,7 @@ def automorphism_group(self, partition=None, verbosity=0,
sage: A5 = AlternatingGroup(5)
sage: Z2 = CyclicPermutationGroup(2)
sage: H = A5.direct_product(Z2)[0] #see documentation for direct_product to explain the [0]
sage: G.is_isomorphic(H)
sage: G.is_isomorphic(H) # optional - internet
True

Multigraphs::
Expand Down
2 changes: 1 addition & 1 deletion src/sage/groups/finitely_presented_named.py
Original file line number Diff line number Diff line change
Expand Up @@ -480,7 +480,7 @@ def AlternatingPresentation(n) -> FinitelyPresentedGroup:
EXAMPLES::

sage: A6 = groups.presentation.Alternating(6)
sage: A6.as_permutation_group().is_isomorphic(AlternatingGroup(6)), A6.order()
sage: A6.as_permutation_group().is_isomorphic(AlternatingGroup(6)), A6.order() # optional - internet
(True, 360)

TESTS:
Expand Down
4 changes: 2 additions & 2 deletions src/sage/groups/libgap_wrapper.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -334,7 +334,7 @@ class ParentLibGAP(SageObject):

EXAMPLES::

sage: SL(2,GF(49)).minimal_normal_subgroups()
sage: SL(2,GF(49)).minimal_normal_subgroups() # optional - internet
[Subgroup with 1 generators (
[6 0]
[0 6]
Expand All @@ -352,7 +352,7 @@ class ParentLibGAP(SageObject):

EXAMPLES::

sage: SL(2,GF(49)).minimal_normal_subgroups()
sage: SL(2,GF(49)).minimal_normal_subgroups() # optional - internet
[Subgroup with 1 generators (
[6 0]
[0 6]
Expand Down
8 changes: 5 additions & 3 deletions src/sage/groups/perm_gps/permgroup.py
Original file line number Diff line number Diff line change
Expand Up @@ -1582,7 +1582,7 @@ def disjoint_direct_product_decomposition(self):

Counting the number of "connected" permutation groups of degree `n`::

sage: seq = [sum(1 for G in SymmetricGroup(n).conjugacy_classes_subgroups() if len(G.disjoint_direct_product_decomposition()) == 1) for n in range(1,8)]; seq
sage: seq = [sum(1 for G in SymmetricGroup(n).conjugacy_classes_subgroups() if len(G.disjoint_direct_product_decomposition()) == 1) for n in range(1,8)]; seq # optional - internet
[1, 1, 2, 6, 6, 27, 20]
sage: oeis(seq) # optional -- internet
0: A005226: Number of atomic species of degree n; also number of connected permutation groups of degree n.
Expand Down Expand Up @@ -3162,7 +3162,7 @@ def as_finitely_presented_group(self, reduced=False):
sage: A = AlternatingGroup(5).as_finitely_presented_group().gap()
sage: ctab = A.CosetTable(A.Subgroup([]))
sage: gen_ls = gap.List(ctab, gap.PermList)
sage: PermutationGroup(gen_ls).is_isomorphic(AlternatingGroup(5))
sage: PermutationGroup(gen_ls).is_isomorphic(AlternatingGroup(5)) # optional - internet
True

AUTHORS:
Expand Down Expand Up @@ -3252,7 +3252,7 @@ def commutator(self, other=None):
sage: G = SymmetricGroup(5)
sage: H = CyclicPermutationGroup(5)
sage: C = G.commutator(H)
sage: C.is_isomorphic(AlternatingGroup(5))
sage: C.is_isomorphic(AlternatingGroup(5)) # optional - internet
True

An abelian group will have a trivial commutator. ::
Expand Down Expand Up @@ -4925,6 +4925,8 @@ def normal_subgroups(self):
sage: G = PSL(2,7)
sage: D = G.direct_product(G)
sage: H = D[0]

sage: # optional - internet
sage: NH = H.normal_subgroups()
sage: len(NH)
4
Expand Down
4 changes: 2 additions & 2 deletions src/sage/groups/perm_gps/permgroup_morphism.py
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,7 @@ def kernel(self):
sage: D = G.direct_product(G)
sage: H = D[0]
sage: pr1 = D[3]
sage: G.is_isomorphic(pr1.kernel())
sage: G.is_isomorphic(pr1.kernel()) # optional - internet
True
"""
return self.domain().subgroup(gap_group=self._libgap_().Kernel())
Expand Down Expand Up @@ -113,7 +113,7 @@ def image(self, J):
sage: pr1.image(G)
Subgroup generated by [(3,7,5)(4,8,6), (1,2,6)(3,4,8)] of
(The projective special linear group of degree 2 over Finite Field of size 7)
sage: G.is_isomorphic(pr1.image(G))
sage: G.is_isomorphic(pr1.image(G)) # optional - internet
True

Check that :issue:`28324` is fixed::
Expand Down
2 changes: 1 addition & 1 deletion src/sage/libs/gap/assigned_names.py
Original file line number Diff line number Diff line change
Expand Up @@ -124,7 +124,7 @@ def list_functions():
sage: 'SubdirectProduct' in FUNCTIONS # indirect doctest
True
"""
fnames = set(GLOBALS).difference(KEYWORDS)
fnames = set(GLOBALS) - {*KEYWORDS, 'AtlasOfGroupRepresentationsInfo'} # accessing the AtlasOfGroupRepresentationsInfo global variable requires internet access and will timeout if the server is down
documented = Filtered(list(fnames), IsDocumentedWord)
return tuple(sorted(documented.sage()))

Expand Down
2 changes: 1 addition & 1 deletion src/sage/topology/simplicial_complex.py
Original file line number Diff line number Diff line change
Expand Up @@ -4296,7 +4296,7 @@ def automorphism_group(self):
True

sage: P = simplicial_complexes.RealProjectivePlane()
sage: P.automorphism_group().is_isomorphic(AlternatingGroup(5)) # needs sage.groups
sage: P.automorphism_group().is_isomorphic(AlternatingGroup(5)) # needs sage.groups # optional - internet
True

sage: Z = SimplicialComplex([['1','2'],['2','3','a']])
Expand Down
2 changes: 1 addition & 1 deletion src/sage/topology/simplicial_complex_examples.py
Original file line number Diff line number Diff line change
Expand Up @@ -583,7 +583,7 @@ def QuaternionicProjectivePlane():

Checking its automorphism group::

sage: HP2.automorphism_group().is_isomorphic(AlternatingGroup(5)) # needs sage.groups
sage: HP2.automorphism_group().is_isomorphic(AlternatingGroup(5)) # needs sage.groups # optional - internet
True
"""
from sage.groups.perm_gps.permgroup import PermutationGroup
Expand Down
Loading