The system of record for AI agent behavior
AgentOps Replay is an open-source, production-grade observability and audit system for AI agents. Unlike traditional monitoring tools, AgentOps Replay provides cryptographically verifiable, immutable event logs designed for incident investigation, compliance, and post-mortems.
When your AI agent crashes, leaks PII, or makes an unexpected decision, you need more than logs—you need evidence.
AgentOps Replay is built for:
- Incident Response: Step-by-step replay of agent behavior
- Compliance: Audit-grade timelines with tamper-evident integrity
- Governance: Policy violation detection and reporting
- Trust: Cryptographic proof that logs haven't been modified
- Auditability over convenience
- Correctness over performance
- Evidence over interpretation
Agent SDK (Untrusted Producer)
↓
Event Log (Immutable, Hash-Chained)
↓
Verifier (Independent Validation)
↓
Compliance Reports (Evidence)
python3 verifier/agentops_verify.py session.jsonl --format jsonfrom agentops_sdk.client import AgentOpsClient
from agentops_sdk.events import EventType
# Local authority mode for testing
client = AgentOpsClient(local_authority=True)
client.start_session(agent_id="my-agent")
# Record events
client.record(EventType.TOOL_CALL, {
"tool_name": "calculator",
"args": {"expression": "2 + 2"}
})
client.end_session(status="success", duration_ms=150)
client.flush_to_jsonl("my_session.jsonl")python3 verifier/agentops_verify.py my_session.jsonl
# Output: PASS ✅from agentops_replay.integrations.langchain import AgentOpsCallbackHandler
# Initialize the callback handler
handler = AgentOpsCallbackHandler(
agent_id="my-langchain-agent",
local_authority=True, # Use False for production (server sealing)
redact_pii=False # Set True to hash sensitive data
)
# Use with any LangChain component
handler.start_session()
agent.invoke({"input": "your query"}, config={"callbacks": [handler]})
handler.end_session()
handler.export_to_jsonl("session.jsonl")See examples/langchain_demo/ for a complete working example.
├── CONSTITUTION.md # Immutable project principles
├── CHAIN_AUTHORITY_INVARIANTS.md # v1.0 - Cryptographic authority separation
├── FAILURE_MODES.md # v1.0 - Component failure semantics
├── EVENT_LOG_SPEC.md # v0.6 - The truth
├── SCHEMA.md # Strict payload definitions
├── verifier/
│ ├── agentops_verify.py # Standalone verification tool
│ ├── jcs.py # RFC 8785 canonicalization
│ └── test_vectors/ # Canonical valid/invalid logs
├── agentops_sdk/
│ ├── client.py # Main SDK entry point
│ ├── events.py # Strict event types
│ ├── envelope.py # Event proposals
│ └── buffer.py # Ring buffer + LOG_DROP
├── sdk/python/agentops_replay/
│ └── integrations/langchain/ # LangChain callback handler
└── examples/
├── langchain_demo/ # LangChain agent demo
└── sdk_demo.py # Working example
| Feature | AgentOps Replay | Traditional Observability |
|---|---|---|
| Immutability | Hash-chained events | Mutable logs |
| Verification | Independent CLI tool | Trust the vendor |
| Compliance | Audit-grade exports | Dashboard screenshots |
| Authority | Server-authoritative | Client-side only |
| Redaction | PII-safe with integrity | Delete = evidence loss |
Phase 4 Complete: LangChain Integration ✅
Status: Green (validated)
- LangChain callback handler implemented
- Demo agent with tools (lookup_order, issue_refund, send_email)
- PII incident simulation documented
- Mock demo mode (no API key required)
- Full verification workflow tested
Next: Phase 5 (Compliance Artifacts)
- Python 3.11+ (pinned for float determinism)
- No external dependencies for verification
# Generate test vectors
python3 verifier/generator.py
# Verify all test cases
python3 verifier/agentops_verify.py verifier/test_vectors/valid_session.jsonl
python3 verifier/agentops_verify.py verifier/test_vectors/invalid_hash.jsonl # Should fail- Constitutional layer (CONSTITUTION.md)
- Chain authority invariants (CHAIN_AUTHORITY_INVARIANTS.md)
- Failure mode documentation (FAILURE_MODES.md)
- Event Log Spec v0.6
- Standalone verifier (
agentops-verify) - Python SDK (local authority mode)
- LangChain integration
- Ingestion service (server authority)
- Compliance report generators
- Long-term storage backend
See CONTRIBUTING.md for development guidelines.
Key principle: If a change violates the Constitution or breaks the verifier, it's invalid—even if it "works."
Apache 2.0 - See LICENSE
@software{agentops_replay,
title = {AgentOps Replay: Immutable Event Logging for AI Agents},
author = {Sahir},
year = {2026},
url = {https://github.com/sahiee-dev/Agentops-replay}
}Built for production. Designed for trust.