Supplementary code for the paper "Computational methods for fast Bayesian hierarchical model assessment via calibrated posterior p-values."
The CPPP procedure is implemented using the nimble
software and compatible with other models written using the nimble
language. The code in this repository has been written for the purpose of running different experiments for the manuscript. There are some plans to extend this to be broadly accessible and user friendly in the future. If you want to try this out, you can jump at the tutorial at the end.
This folder comes with some pre-computed .rds
results for the different example to allow to reproduce figures in the manuscript as running the script 2_runMonteCarloCPPP.R
for Monte Carlo simulation of all the procedure is computationally intensive.
Make sure to have the following R
packages installed.
install.packages("nimble")
install.packages("R.utils")
## packages for cppp variance estimation
install.packages("maotai") ## moving block bootstrap
install.packages("mcmcse") ## mcmc variance
## packages for output processing and visualization
install.packages("ggplot2")
install.packages("latex2exp")
install.packages("cowplot")
install.packages("reshape2")
install.packages("bayestestR")
install.packages("extraDistr") ## for betabinomial distribution
## package for the dipper examples
install.packages("R2ucare") ## for function marray - capture-recapture example
├── CPPPfunctions ## Containts the main function for the cppp procedure
├── figures ## output folder for figures
├── sec4_betaBinomialExample ## code to reproduce example and plot in Section 4
├── sec6_examples ## containts one folder for each examples in Section 6
└── slurmScripts ## scripts for computing cluster using SLURM
The following R scripts are parametrized so that the same script can be used for different examples. Arguments of the scripts are described at the beginning of the R script.
Script 1
run the cppp procedure for one example, while script 2
performs a Monte Carlo simulation of all the cppp procedure.
Scripts 3_*
uses outputs from scripts 1
and 2
to compute different estimates of the cppp and its variance under various scenarios of computational cost (i.e. number of MCMC samples and calibration replicates).
Scripts 4_*
make plots in Section 6 of the paper and in the supplementary material.
├── 1_runCPPP.R ## run cppp procedure for one example
├── 2_runMonteCarloCPPP.R ## run the cppp procedure multiple times for brute force Monte Carlo estimation
├── 3_computeBootstrapSE.R ## compute Bootstrap estimates of the cppp standard error + coverage
├── 3_computeMCSE.R ## compute brute force estimate of the cppp standard error via Monte carlo
├── 3_computePluginSE.R ## compute Plug-in estimates of the cppp standard error + coverage
├── 4_coverage.R ## extract results for coverage e
├── 4_plotPPPdistr.R ## plot the distribution of the ppp for the examples
├── 4_plotResults.R ## reproduce plots in Section6 with cppp estimates and variance estimates
The bash scripts main_EXAMPLENAME.sh
contains all the steps to reproduce results for each of the examples presented in the paper.
Running the bash script can be memory/time-consuming, especially when calling 2_runMonteCarloCPPP.R
. For results in the paper, I made use of cluster computing managed via SLURM; those scripts are in the slurmScripts
folder.
All scripts (except 4_plotPPPdistr.R
and 5_times.R
) are parametrized and can be run separately. Details are given in the comments at the beginning of each file. For example to run the CPPP procedure for the newcomb data:
Rscript 1_runCPPP.R \
--dirExample=sec6_examples/newcomb \
--dataPath="sec6_examples/newcomb/light.txt" \
--runOriginal=TRUE \
--nCalibrationReplicates=1000 \
--nIterMCMC=1000 \
--returnSamples=TRUE \
--returnDiscrepancies=TRUE \
--calcDisc=TRUE \
Notice that in each folder there is a script named model.R
, including a statistical model coded in nimble, with initial values and constants, and discrepancy functions. It also contains the details regarding the MCMC settings for the first MCMC run.
Info on the parameters for 1_runCPPP.R
; output will be a list saved in an .rds
file.
--dirExample ## path to folder containing files for input and outputs
--dataPath ## path to data
--runOriginal ## if TRUE then run first original MCMC
--nCalibrationReplicates ## number of calibration replicates
--nIterMCMC ## number of mcmc samples per calibration replicates
--returnSamples ## if TRUE save and return all samples
--returnDiscrepancies ## if TRUE save and return all computed discrepancies
--calcDisc ## if TRUE compute the PPP
Figures 3 in Section 4 (and Figure S2 in SM)
Rscript sec4_betaBinomialExample/1_plotFixedCC.R
Rscript sec4_betaBinomialExample/1_SM_plotFixedM.R
Figures in Section 6; the scripts uses pre-computed values of the cppp variance using different methods in the paper. The results are saved in each example folder in sec6_examples/[name_example]/[file.rds]
where file.rds
can be:
varianceMC.rds
- cppp variance estimated via Monte Carlo (baseline)variancePlugin.rds
- cppp variance estimated via plug-in and using a transfer estimatorvarianceBootstrap.rds
- cppp variance estimated via Bootstrap (Bootstrap-normal and Bootstrap-Plugin)
Rscript 4_plotResults.R --dirExample="sec6_examples/newcomb" --plotTitle="Newcomb example - good mixing"
Rscript 4_plotResults.R --dirExample="sec6_examples/newcombBadMixing" --plotTitle="Newcomb example - bad mixing"
Rscript 4_plotResults.R --dirExample="sec6_examples/dipperTT" --plotTitle="Dipper example - T/T model"
Rscript 4_plotResults.R --dirExample="sec6_examples/dipperCC" --plotTitle="Dipper example - C/C model"
Rscript 4_plotResults.R --dirExample="sec6_examples/capRecapSimulated" --plotTitle="Simulated example - T/T model"
Minimum requirements are 1_runCPPP.R
script and the following package.
install.packages("nimble")
## packages for cppp variance estimation
install.packages("maotai") ## moving block bootstrap
install.packages("mcmcse") ## mcmc variance
A minimal example is given here