A web application to fetch and translate summaries from Arxiv.org papers using GPT-3.5.
- Modern and responsive web interface
- Paper search by category
- Automatic translation of titles and summaries
- PDF preview
- Minimalist design with TailwindCSS
- Python 3.13
- OpenAI API Key
- Clone the repository
- Create a virtual environment:
python -m venv venv source venv/bin/activate # On Unix/macOS
- Install dependencies:
pip install -r requirements.txt
- Create
.env
file with your OpenAI API key:OPENAI_API_KEY=your_api_key_here
- Start the server:
python main.py
- Open in browser:
http://localhost:5000
The web interface allows you to:
- Select the paper category to search
- Specify the number of results
- View paper summaries with a clean and modern design
- Get translations with a single click
- Access paper PDFs directly
You can also use the API directly:
-
GET /papers/
- Gets recent papers from Arxiv
- Parameters:
category
(optional): Arxiv category (default: "cs.AI")max_results
(optional): Maximum number of results (default: 5)
- Example:
http://localhost:5000/papers/?category=cs.AI&max_results=3
-
GET /papers/<paper_id>/summary
- Gets a translated summary of a specific paper
- Parameters:
translate
(optional): Whether to translate the title (default: true)
- Example:
http://localhost:5000/papers/2312.01047/summary
{
"original_title": "Deep Learning in Computer Vision",
"translated_title": "Deep Learning in Computer Vision",
"original_summary": "This paper presents...",
"translated_summary": "This paper presents..."
}