Skip to content

Tensor template class created #6

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
333 changes: 333 additions & 0 deletions include/cslib/data_structure/tensor.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,333 @@
#ifndef CSLIB_DATA_STRUCTURE_TENSOR_HPP
#define CSLIB_DATA_STRUCTURE_TENSOR_HPP

#include <cstdint>
#include <string>
#include <vector>
#include <numeric>

namespace cslib {
namespace data_structure
{
/* Class representing tensor object.
* TODO:
* -broadcasting
* -range cutting
* -linear algebra operations
* -dimension operations (expand, reshape, ...)
*/


template <typename T>
class Tensor
{
public:
using SizeType = size_t;
using Dimensions = std::vector<SizeType>;
using Strides = std::vector<SizeType>;

private:
T* _data;
SizeType _number_elements;
Dimensions _dims;
Strides _strides;
bool _is_shallow_copy;

public:
// Constructors
Tensor(const Dimensions& dims) :
_is_shallow_copy(false),
_data(nullptr),
_dims(dims)
{
auto dims_size = _dims.size();
_strides = Strides(dims_size);

_strides[dims_size-1] = 1;
for (auto i = 1; i < dims_size; i++)
_strides[i-1] = std::accumulate(_dims.begin() + i, _dims.end(), 1, std::multiplies<SizeType>());

_number_elements = std::accumulate(_dims.begin(), _dims.end(), 1, std::multiplies<SizeType>());
_data = new T[_number_elements];
}

Tensor(const Tensor& rhs)
{
dataRelease();

_data = rhs._data;
_dims = rhs._dims;
_strides = rhs._strides;
_number_elements = rhs._number_elements;
_is_shallow_copy = true;
}

Tensor(Tensor&& rhs) noexcept
{
dataRelease();

_data = rhs._data;
_dims = rhs._dims;
_strides = rhs._strides;
_number_elements = rhs._number_elements;
_is_shallow_copy = rhs._is_shallow_copy;

rhs._data = nullptr;
rhs._dims.clear();
rhs._strides.clear();
rhs._number_elements = 0;
rhs._is_shallow_copy = false;
}

// Destructor
~Tensor() noexcept
{
dataRelease();
}

// Operators overloading
Tensor& operator=(const Tensor& rhs)
{
// if (_is_shallow_copy && _is_sub_tensor) // copying sub tensor
// {
// // assert (_dims == rhs._dims)?
// if (_dims == rhs._dims)
// for (auto i = 0; i < _number_elements; i++)
// _data[i] = rhs._data[i];
// }
// else // tensor is not sub tensor
// {
// dataRelease();

// _data = rhs._data;
// _number_elements = rhs._number_elements;
// _dims = rhs._dims;
// _is_shallow_copy = true;
// }

return *this;
}

Tensor& operator=(Tensor&& rhs) noexcept
{
// if (_is_shallow_copy && _is_sub_tensor) // copying sub tensor
// {
// // assert (_dims == rhs._dims)?
// if (_dims == rhs._dims)
// for (auto i = 0; i < _number_elements; i++)
// _data[i] = rhs._data[i];
// }
// else // tensor is not sub tensor
// {
// dataRelease();

// _data = rhs._data;
// _number_elements = rhs._number_elements;
// _dims = rhs._dims;
// _is_shallow_copy = true;
// }

rhs._data = nullptr;
rhs._number_elements = 0;
rhs._dims.clear();
rhs._strides.clear();
rhs._is_shallow_copy = false;

return *this;
}

Tensor& operator=(T value)
{
// for (auto i = 0; i < _number_elements; i++)
// _data[i] = value;

return *this;
}

Tensor operator+(T value) const
{
Tensor result = make_copy();

// for (auto i = 0; i < _number_elements; i++)
// result._data[i] = _data[i] + value;

return result;
}

Tensor operator+(const Tensor& rhs) const
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Тут вот не понял, почему две перегрузки для сложения. Хватит перегрузки для const-reference, потому что rvalue объект неявно легко преобразуется к const-ref. В противном случае, в перегрузке что сверху всегда будет происходить лишнее копирование. И логика у них почему-то разная..

{
Tensor result = make_copy();

// if (rhs._dims == _dims) // element-wise addition
// {
// for (auto i = 0; i < _number_elements; i++)
// result._data[i] = _data[i] + rhs._data[i];
// }

return result;
}

Tensor operator*(T value) const
{
Tensor result = make_copy();

// for (auto i = 0; i < _number_elements; i++)
// result._data[i] = _data[i] * value;

return result;
}

Tensor operator*(const Tensor& rhs) const
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

То же самое, что для оператора+

{
Tensor result = make_copy();

// if (rhs._dims == _dims) // element-wise multiply
// {
// for (auto i = 0; i < _number_elements; i++)
// result._data[i] = _data[i] * rhs._data[i];
// }

return result;
}

Tensor operator[](int index)
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Вот тут не понятно, я всегда буду получать копию. Тензор не модифицируем? Тогда ок.
И все индексы нужно передавать по size_t.

{
auto data_offset = _data;
Strides new_strides;
Dimensions new_dims;
if (_dims.size() == 1)
{
new_dims = Dimensions({1});
new_strides = Strides({1});
data_offset += i * _strides.back()
}
else
{
new_dims = Dimensions(_dims.begin() + 1, _dims.end());
new_strides = Strides(_strides.begin() + 1, _strides.end());
data_offset += i * _strides.front();
}

return Tensor(new_dims, new_strides, data_offset);
}

// const Tensor operator[](int index) const
// {
// auto new_dimensions = _dims;
// new_dimensions.erase(new_dimensions.begin());

// if (new_dimensions.size() == 0)
// new_dimensions.push_back(1);

// auto data_offset = _data + index * std::accumulate(new_dimensions.begin(), new_dimensions.end(), 1, std::multiplies<SizeType>());
// return Tensor(new_dimensions, data_offset);
// }

// deep copy operations
Tensor make_copy() const
{
auto copied_tensor = Tensor(_dims);

for (auto i = 0; i < _number_elements; i++)
copied_tensor._data[i] = _data[i];

return copied_tensor;
}

// get properties
const Dimensions& shape() const { return _dims; }
const Strides& strides() const { return _strides; }
const SizeType size() const { return _number_elements; }

// Linear algebra
void transpose()
{
// auto tmp = _dims[0];
// _dims[0] = _dims[1];
// _dims[1] = tmp;

// in-place sort or some iterators magic requiered
}

// String representation
std::string to_string() const
{
std::string result = "";
auto num_dims = _dims.size();

if (num_dims > 2)
{
for (auto i = 0; i < _dims[0]; i++)
result += (*this)[i].to_string();
}
else if (num_dims == 2)
{
auto _h = _dims[0];
auto _w = _dims[1];

result += "[";
for (auto i = 0; i < _number_elements; i += _w)
{
if (i != 0)
result += " [";
else
result += "[";

for (auto j = 0; j < _w; j++)
{
if (j != (_w - 1))
result += std::to_string(_data[i+j]) + ", ";
else
result += std::to_string(_data[i+j]);
}
result += "]";

if (i != (_h - 1))
result += "\n";
}
result += "]\n\n";
}
else
{
result += "[";
for (auto i = 0; i < _dims[0]; i++)
{
if (i != (_dims[0] - 1))
result += std::to_string(_data[i]) + ", ";
else
result += std::to_string(_data[i]);
}
result += "] ";
}

return result.substr(0, result.length() - 2);
}

private:
// sub-tensor ctor
Tensor(const Dimensions& dims, const Strides& strides, const T* data_start_address)
: _is_shallow_copy(true),
_data(data_start_address),
_strides(strides),
_dims(dims)
{
_number_elements = std::accumulate(_dims.begin(), _dims.end(), 1, std::multiplies<SizeType>());
}

// Memory management
void dataRelease()
{
if (!_is_shallow_copy && _data)
{
delete[] _data;
_data = nullptr;
}
}

// iterate engine
void elementWiseOperation()
};

}}

#endif // CSLIB_DATA_STRUCTURE_TENSOR_HPP
33 changes: 33 additions & 0 deletions tests/data_structure/tensor.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
#include <gtest/gtest.h>

#include <cslib/data_structure/tensor.hpp>

TEST(Tensor, construction)
{
cslib::data_structure::Tensor<int> tensor({5, 3});

ASSERT_EQ(tensor.size(), 15);
ASSERT_EQ(container.shape(), std::vector<size_t>({5, 3}));
}


TEST(Tensor, tensor_slicing)
{
cslib::data_structure::Tensor<int> tensor({5, 3});
cslib::data_structure::Tensor<int> sub_tensor = tensor[2];

ASSERT_EQ(sub_tensor.size(), 3);
ASSERT_EQ(sub_tensor.shape(), std::vector<size_t>({3}));
}


TEST(Tensor, constant_addition)
{
cslib::data_structure::Tensor<int> tensor({5, 3});
tensor[2] = 1;
tensor[3] = tensor[2] + 2;

ASSERT_EQ(tensor[3][0], 3);
ASSERT_EQ(tensor[3][1], 3);
ASSERT_EQ(tensor[3][2], 3);
}