Skip to content

santosjorge/cufflinks

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Cufflinks

This library binds the power of plotly with the flexibility of pandas for easy plotting.

This library is available on https://github.com/santosjorge/cufflinks

This tutorial assumes that the plotly user credentials have already been configured as stated on the getting started guide.

Tutorials:

3D Charts

Release Notes

v0.17.0

Support for Plotly 4.x
Cufflinks is no longer compatible with Plotly 3.x

v0.14.0

Support for Plotly 3.0

v0.13.0

New iplot helper. To see a comprehensive list of parameters cf.help()

# For a list of supported figures
cf.help()
# Or to see the parameters supported that apply to a given figure try
cf.help('scatter')
cf.help('candle') #etc

v0.12.0

Removed dependecies on ta-lib. This library is no longer required. All studies have be rewritten in Python.

v0.11.0

  • QuantFigure is a new class that will generate a graph object with persistence. Parameters can be added/modified at any given point.

This can be as easy as:

df=cf.datagen.ohlc()
qf=cf.QuantFig(df,title='First Quant Figure',legend='top',name='GS')
qf.add_bollinger_bands()
qf.iplot()

QuantFigure

  • Technical Analysis Studies can be added on demand.
qf.add_sma([10,20],width=2,color=['green','lightgreen'],legendgroup=True)
qf.add_rsi(periods=20,color='java')
qf.add_bollinger_bands(periods=20,boll_std=2,colors=['magenta','grey'],fill=True)
qf.add_volume()
qf.add_macd()
qf.iplot()

Technical Analysis

v0.10.0

  • rangeslider to display a date range slider at the bottom
    • cf.datagen.ohlc().iplot(kind='candle',rangeslider=True)
  • rangeselector to display buttons to change the date range displayed
    • cf.datagen.ohlc(500).iplot(kind='candle', rangeselector={ 'steps':['1y','2 months','5 weeks','ytd','2mtd','reset'], 'bgcolor' : ('grey',.3), 'x': 0.3 , 'y' : 0.95})
  • Customise annotions, with fontsize,fontcolor,textangle
    • Label mode
      • cf.datagen.lines(1,mode='stocks').iplot(kind='line', annotations={'2015-02-02':'Market Crash', '2015-03-01':'Recovery'}, textangle=-70,fontsize=13,fontcolor='grey')
    • Explicit mode
      • cf.datagen.lines(1,mode='stocks').iplot(kind='line', annotations=[{'text':'exactly here','x':'0.2', 'xref':'paper','arrowhead':2, 'textangle':-10,'ay':150,'arrowcolor':'red'}])

v0.9.0

  • Figure.iplot() to plot figures
  • New high performing candle and ohlc plots
    • cf.datagen.ohlc().iplot(kind='candle')

v0.8.0

  • 'cf.datagen.choropleth()' to for sample choropleth data.
  • 'cf.datagen.scattergeo()' to for sample scattergeo data.
  • Support for choropleth and scattergeo figures in iplot
  • 'cf.get_colorscale' for maps and plotly objects that support colorscales

v0.7.1

  • xrange, yrange and zrange can be specified in iplot and getLayout
    • cf.datagen.lines(1).iplot(yrange=[5,15])
  • layout_update can be set in iplot and getLayout to explicitly update any Layout value

v0.7

  • Support for Python 3

v0.6

See the IPython Notebook

  • Support for pie charts
    • cf.datagen.pie().iplot(kind='pie',labels='labels',values='values')
  • Generate Open, High, Low, Close data
    • datagen.ohlc()
  • Candle Charts support
    • ohlc=cf.datagen.ohlc()
      ohlc.iplot(kind='candle',up_color='blue',down_color='red')
  • OHLC (Bar) Charts support
    • ohlc=cf.datagen.ohlc()
      ohlc.iplot(kind='ohlc',up_color='blue',down_color='red')
  • Support for logarithmic charts ( logx | logy )
    • df=pd.DataFrame([x**2] for x in range(100))
      df.iplot(kind='lines',logy=True)
  • Support for MulitIndex DataFrames
  • Support for Error Bars ( error_x | error_y )
    • cf.datagen.lines(1,5).iplot(kind='bar',error_y=[1,2,3.5,2,2])
    • cf.datagen.lines(1,5).iplot(kind='bar',error_y=20, error_type='percent')
  • Support for continuous error bars
    • cf.datagen.lines(1).iplot(kind='lines',error_y=20,error_type='continuous_percent')
    • cf.datagen.lines(1).iplot(kind='lines',error_y=10,error_type='continuous',color='blue')
  • Technical Analysis Studies for Timeseries (beta)
    • Simple Moving Averages (SMA)
      • cf.datagen.lines(1,500).ta_plot(study='sma',periods=[13,21,55])
    • Relative Strength Indicator (RSI)
      • cf.datagen.lines(1,200).ta_plot(study='boll',periods=14)
    • Bollinger Bands (BOLL)
      • cf.datagen.lines(1,200).ta_plot(study='rsi',periods=14)
    • Moving Average Convergence Divergence (MACD)
      • cf.datagen.lines(1,200).ta_plot(study='macd',fast_period=12,slow_period=26, signal_period=9)

v0.5

  • Support of offline charts
    • cf.go_offline()
    • cf.go_online()
    • cf.iplot(figure,online=True) (To force online whilst on offline mode)
  • Support for secondary axis
    • fig=cf.datagen.lines(3,columns=['a','b','c']).figure()
      fig=fig.set_axis('b',side='right')
      cf.iplot(fig)

v0.4

  • Support for global theme setting
    • cufflinks.set_config_file(theme='pearl')
  • New theme ggplot
    • cufflinks.datagen.lines(5).iplot(theme='ggplot')
  • Support for horizontal bar charts barh
    • cufflinks.datagen.lines(2).iplot(kind='barh',barmode='stack',bargap=.1)
  • Support for histogram orientation and normalization
    • cufflinks.datagen.histogram().iplot(kind='histogram',orientation='h',norm='probability')
  • Support for area plots
    • cufflinks.datagen.lines(4).iplot(kind='area',fill=True,opacity=1)
  • Support for subplots
    • cufflinks.datagen.histogram(4).iplot(kind='histogram',subplots=True,bins=50)
    • cufflinks.datagen.lines(4).iplot(subplots=True,shape=(4,1),shared_xaxes=True,vertical_spacing=.02,fill=True)
  • Support for scatter matrix to display the distribution amongst every series in the DataFrame
    • cufflinks.datagen.lines(4,1000).scatter_matrix()
  • Support for vline and hline for horizontal and vertical lines
    • cufflinks.datagen.lines(3).iplot(hline=[2,3])
    • cufflinks.datagen.lines(3).iplot(hline=dict(y=2,color='blue',width=3))
  • Support for vspan and hspan for horizontal and vertical areas
    • cufflinks.datagen.lines(3).iplot(hspan=(-1,2))
    • cufflinks.datagen.lines(3).iplot(hspan=dict(y0=-1,y1=2,color='orange',fill=True,opacity=.4))

v0.3.2

  • Global setting for public charts
    • cufflinks.set_config_file(world_readable=True)

v0.3

  • Enhanced Spread charts
    • cufflinks.datagen.lines(2).iplot(kind='spread')
  • Support for Heatmap charts
    • cufflinks.datagen.heatmap().iplot(kind='heatmap')
  • Support for Bubble charts
    • cufflinks.datagen.bubble(4).iplot(kind='bubble',x='x',y='y',text='text',size='size',categories='categories')
  • Support for Bubble3d charts
    • cufflinks.datagen.bubble3d(4).iplot(kind='bubble3d',x='x',y='y',z='z',text='text',size='size',categories='categories')
  • Support for Box charts
    • cufflinks.datagen.box().iplot(kind='box')
  • Support for Surface charts
    • cufflinks.datagen.surface().iplot(kind='surface')
  • Support for Scatter3d charts
    • cufflinks.datagen.scatter3d().iplot(kind='scatter3d',x='x',y='y',z='z',text='text',categories='categories')
  • Support for Histograms
    • cufflinks.datagen.histogram(2).iplot(kind='histogram')
  • Data generation for most common plot types
    • cufflinks.datagen
  • Data extraction: Extract data from any Plotly chart. Data is delivered in DataFrame
    • cufflinks.to_df(Figure)
  • Integration with colorlover
    • Support for scales iplot(colorscale='accent') to plot a chart using an accent color scale
    • cufflinks.scales() to see all available scales
  • Support for named colors * iplot(colors=['pink','red','yellow'])

About

Productivity Tools for Plotly + Pandas

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published