-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
TST: all mass matrix cases for Quad4
- Loading branch information
1 parent
1e1f05f
commit f206295
Showing
1 changed file
with
143 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,143 @@ | ||
import sys | ||
sys.path.append('..') | ||
|
||
import numpy as np | ||
from scipy.sparse.linalg import eigsh, eigs | ||
from scipy.sparse import coo_matrix | ||
|
||
from pyfe3d.shellprop_utils import isotropic_plate | ||
from pyfe3d import Quad4, Quad4Data, Quad4Probe, INT, DOUBLE, DOF | ||
|
||
|
||
def test_nat_freq_plate(plot=False, mode=0, mtypes=range(3), refinement=1): | ||
data = Quad4Data() | ||
probe = Quad4Probe() | ||
for mtype in mtypes: | ||
nx = refinement*9 | ||
ny = refinement*11 | ||
|
||
a = 0.3 | ||
b = 0.5 | ||
|
||
E = 203.e9 # Pa | ||
nu = 0.33 | ||
|
||
rho = 7.83e3 # kg/m3 | ||
h = 0.01 # m | ||
|
||
xtmp = np.linspace(0, a, nx) | ||
ytmp = np.linspace(0, b, ny) | ||
xmesh, ymesh = np.meshgrid(xtmp, ytmp) | ||
ncoords = np.vstack((xmesh.T.flatten(), ymesh.T.flatten(), np.zeros_like(ymesh.T.flatten()))).T | ||
|
||
x = ncoords[:, 0] | ||
y = ncoords[:, 1] | ||
z = ncoords[:, 2] | ||
ncoords_flatten = ncoords.flatten() | ||
|
||
nids = 1 + np.arange(ncoords.shape[0]) | ||
nid_pos = dict(zip(nids, np.arange(len(nids)))) | ||
nids_mesh = nids.reshape(nx, ny) | ||
n1s = nids_mesh[:-1, :-1].flatten() | ||
n2s = nids_mesh[1:, :-1].flatten() | ||
n3s = nids_mesh[1:, 1:].flatten() | ||
n4s = nids_mesh[:-1, 1:].flatten() | ||
|
||
num_elements = len(n1s) | ||
print('num_elements', num_elements) | ||
|
||
KC0r = np.zeros(data.KC0_SPARSE_SIZE*num_elements, dtype=INT) | ||
KC0c = np.zeros(data.KC0_SPARSE_SIZE*num_elements, dtype=INT) | ||
KC0v = np.zeros(data.KC0_SPARSE_SIZE*num_elements, dtype=DOUBLE) | ||
Mr = np.zeros(data.M_SPARSE_SIZE*num_elements, dtype=INT) | ||
Mc = np.zeros(data.M_SPARSE_SIZE*num_elements, dtype=INT) | ||
Mv = np.zeros(data.M_SPARSE_SIZE*num_elements, dtype=DOUBLE) | ||
N = DOF*nx*ny | ||
|
||
prop = isotropic_plate(thickness=h, E=E, nu=nu, calc_scf=True, rho=rho) | ||
|
||
quads = [] | ||
init_k_KC0 = 0 | ||
init_k_M = 0 | ||
for n1, n2, n3, n4 in zip(n1s, n2s, n3s, n4s): | ||
pos1 = nid_pos[n1] | ||
pos2 = nid_pos[n2] | ||
pos3 = nid_pos[n3] | ||
pos4 = nid_pos[n4] | ||
r1 = ncoords[pos1] | ||
r2 = ncoords[pos2] | ||
r3 = ncoords[pos3] | ||
normal = np.cross(r2 - r1, r3 - r2)[2] | ||
assert normal > 0 | ||
quad = Quad4(probe) | ||
quad.n1 = n1 | ||
quad.n2 = n2 | ||
quad.n3 = n3 | ||
quad.n4 = n4 | ||
quad.c1 = DOF*nid_pos[n1] | ||
quad.c2 = DOF*nid_pos[n2] | ||
quad.c3 = DOF*nid_pos[n3] | ||
quad.c4 = DOF*nid_pos[n4] | ||
quad.init_k_KC0 = init_k_KC0 | ||
quad.init_k_M = init_k_M | ||
quad.update_rotation_matrix(ncoords_flatten) | ||
quad.update_probe_xe(ncoords_flatten) | ||
quad.update_KC0(KC0r, KC0c, KC0v, prop) | ||
quad.update_M(Mr, Mc, Mv, prop, mtype=mtype) | ||
quads.append(quad) | ||
init_k_KC0 += data.KC0_SPARSE_SIZE | ||
init_k_M += data.M_SPARSE_SIZE | ||
|
||
print('elements created') | ||
|
||
KC0 = coo_matrix((KC0v, (KC0r, KC0c)), shape=(N, N)).tocsc() | ||
M = coo_matrix((Mv, (Mr, Mc)), shape=(N, N)).tocsc() | ||
|
||
print('sparse KC0 and M created') | ||
|
||
bk = np.zeros(N, dtype=bool) | ||
check = np.isclose(x, 0.) | np.isclose(x, a) | np.isclose(y, 0) | np.isclose(y, b) | ||
bk[0::DOF] = check | ||
bk[1::DOF] = check | ||
bk[2::DOF] = check | ||
|
||
bu = ~bk | ||
|
||
Kuu = KC0[bu, :][:, bu] | ||
Muu = M[bu, :][:, bu] | ||
|
||
num_eigenvalues = max(2, mode+1) | ||
print('eig solver begin') | ||
# solves Ax = lambda M x | ||
# we have Ax - lambda M x = 0, with lambda = omegan**2 | ||
eigvals, eigvecsu = eigsh(A=Kuu, M=Muu, sigma=-1., which='LM', | ||
k=num_eigenvalues, tol=1e-3) | ||
print('eig solver end') | ||
eigvecs = np.zeros((N, eigvecsu.shape[1]), dtype=float) | ||
eigvecs[bu, :] = eigvecsu | ||
omegan = eigvals**0.5 | ||
|
||
u = np.zeros(N) | ||
u[bu] = eigvecsu[:, mode] | ||
|
||
# theoretical reference | ||
m = 1 | ||
n = 1 | ||
D = 2*h**3*E/(3*(1 - nu**2)) | ||
wmn = (m**2/a**2 + n**2/b**2)*np.sqrt(D*np.pi**4/(2*rho*h))/2 | ||
|
||
print('Theoretical omega123', wmn) | ||
print('Numerical omega123', omegan[0:10]) | ||
assert np.isclose(wmn, omegan[0], rtol=0.05) | ||
|
||
if plot: | ||
import matplotlib | ||
matplotlib.use('TkAgg') | ||
import matplotlib.pyplot as plt | ||
plt.clf() | ||
plt.contourf(xmesh, ymesh, u[2::DOF].reshape(nx, ny).T) | ||
plt.show() | ||
|
||
|
||
if __name__ == '__main__': | ||
test_nat_freq_plate(plot=True, mode=29, mtypes=[2], refinement=5) |