Skip to content

This repo aims to provide tools that most data scientists use day-to-day or may find useful and begin to use day-to-day.

License

Notifications You must be signed in to change notification settings

savourylie/dstk

Repository files navigation

DSTK, Data Science Toolkit

Dependencies

  • pandas == 0.22.0

Package structure

Inspection

Bi-variant inspection

  • chi2 (2 stars)
  • ANOVA (2 stars)
  • T-test (2 stars)
  • IV (3 stars)
  • KS (3 stars)

Check collinearity

  • Collinearity
    • TBD
  • Multicolinearity
    • Variance Inflation Factor (3 stars)

OOT inspection

  • PSI (3 stars)
  • Dataframe comparison (unit tests-covered)

Data type detector (3 stars)

  • Numeric
  • Numeric-Categorical
  • String-Categorical
  • Time

Outlier detection

Univariate
  • Tukey's method
  • z-test
Multivariate
  • Residual threshold method
  • Local outlier factor
  • HiCS

Preprocessing

Imputing (unit tests-covered)

  • Continous
    • mean
    • truncated mean
    • median
    • bin-nan
  • Categorical
    • most frequent class
    • stringify

MISC

  • onehot_split

Metric

Response related metrics

Clustering metrics

  • Purity (need unit tests)
  • Accuracy (need unit tests)

Transformation

Binning

  • Equal pupulation binning (3 stars)
  • Equal value binning (3 stars)
  • Monotonic binning
  • ChiMerge

Encoding

  • Dummy (2 stars)
  • WOE (2 stars)
  • Tree leaves encoding

Clustering

K-based clustering

Density-based clustering

Hierarchical clustering

Advanced clustering

  • Spectral clustering
  • Subspace clustering
  • Multi-sourced clustering
  • Multi-aspect clustering
  • Multi-task clustering

Deep learning-based clustering

  • AE + K-means
  • AE + Spectral clustering
  • AE + Subspace clustering

Feature learning

Adversarial representation learning

  • BiGAN
  • infoGAN
  • AAE

statistical description of raw data

Exploring/Summarize the data distribution

data type

different processing methods for differnet types of data

numeric

  • continuous: Data that can take on any value in an interval
  • discrete: Data that can only take on integer values

categorical

Data that can only take on a specific set of values

  • Binary: special case of categorical data, can only take two values

ordinal

Categorical data that has an explicit ordering

Numeric data statistical description

Estimates of Location

  • mean
  • truncated mean
  • weighted mean
  • median
  • outliers

Estimates of Variability

  • variance: N-1
  • standard deviation
  • range: min/max values
  • percentiles
  • Interquartile Range(IQR): 75th percentile - 25th percentile

data distribution exploration

  • Boxplot
  • Frequency table
  • histogram
  • density plot: kernal density estimate

Categorical data statistical description

  • Mode: the most commonly category/value
  • Expected value: similar as weighted mean
  • Bar charts:The frequency or proportion for each category plotted as bars
  • Pie charts:The frequency or proportion for each category plotted as wedges in a pie =======

MISC

  • Entity embeddings

About

This repo aims to provide tools that most data scientists use day-to-day or may find useful and begin to use day-to-day.

Resources

License

Stars

Watchers

Forks

Packages

No packages published