forked from fgrosa/MLforPID
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_multiclass.py
114 lines (101 loc) · 4.69 KB
/
test_multiclass.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
#!/usr/bin/env python3
import numpy as np
import pandas as pd
from sklearn import svm
from xgboost import XGBClassifier
import matplotlib.pyplot as plt
from plotting_utils import make_meshgrid, plot_contours
# generate random distributions for 4 cathegories
x_A, y_A = (np.random.normal(0, 1, 5000) for ivar in range(2))
x_B, y_B = (np.random.normal(2, 1, 5000) for ivar in range(2))
x_C, y_C = (np.random.normal(10*(-1*ivar), 2, 5000) for ivar in range(2))
x_D, y_D = (np.random.normal(-7, 4, 5000) for ivar in range(2))
# define pandas df for each cathegory
df_A = pd.DataFrame({'x': x_A, 'y': y_A}, columns=['x', 'y'])
df_B = pd.DataFrame({'x': x_B, 'y': y_B}, columns=['x', 'y'])
df_C = pd.DataFrame({'x': x_C, 'y': y_C}, columns=['x', 'y'])
df_D = pd.DataFrame({'x': x_D, 'y': y_D}, columns=['x', 'y'])
df_A['category'] = 0
df_B['category'] = 1
df_C['category'] = 2
df_D['category'] = 3
# define training df (first 500 elements of each cathegory)
training_columns = ['x', 'y']
training_df = pd.concat([df_A.iloc[:500], df_B.iloc[:500],
df_C.iloc[:500], df_D.iloc[:500]], ignore_index=True, sort=True)
# define test df (second 500 elements of each cathegory)
test_df = pd.concat([df_A.iloc[500:], df_B.iloc[500:],
df_C.iloc[500:], df_D.iloc[500:]], ignore_index=True, sort=True)
# train model with SVM
lin_clf = svm.SVC(
gamma='scale', decision_function_shape='ovo', probability=True)
lin_clf.fit(training_df[training_columns], training_df['category'])
# train model with XGBoost
xgb_clf = XGBClassifier()
xgb_clf.fit(training_df[training_columns], training_df['category'])
# predict probabilities for test set
probabilities_svm = lin_clf.predict_proba(test_df[training_columns])
probabilities_xgb = xgb_clf.predict_proba(test_df[training_columns])
for prob in range(4):
test_df['prob_svm_{0}'.format(prob)] = probabilities_svm[:, prob]
test_df['prob_xgb_{0}'.format(prob)] = probabilities_xgb[:, prob]
# plots
figcontur_svm = plt.figure(figsize=(18, 7.5))
contourax_svm = figcontur_svm.add_subplot(111)
xx_svm, yy_svm = make_meshgrid(test_df['x'], test_df['y'])
plot_contours(contourax_svm, lin_clf, xx_svm, yy_svm, cmap='RdYlBu', alpha=0.8)
contourax_svm.scatter(test_df.x, test_df.y,
c=test_df['category'], cmap='RdYlBu', s=20, edgecolors='k')
contourax_svm.set_xlim(xx_svm.min(), xx_svm.max())
contourax_svm.set_ylim(yy_svm.min(), yy_svm.max())
contourax_svm.set_xlabel('x')
contourax_svm.set_ylabel('y')
contourax_svm.set_xticks(())
contourax_svm.set_yticks(())
figcontur_xgb = plt.figure(figsize=(18, 7.5))
contourax_xgb = figcontur_xgb.add_subplot(111)
xx_xgb, yy_xgb = make_meshgrid(test_df['x'], test_df['y'])
plot_contours(contourax_xgb, lin_clf, xx_xgb, yy_xgb, cmap='RdYlBu', alpha=0.8)
contourax_xgb.scatter(test_df.x, test_df.y,
c=test_df['category'], cmap='RdYlBu', s=20, edgecolors='k')
contourax_xgb.set_xlim(xx_xgb.min(), xx_xgb.max())
contourax_xgb.set_ylim(yy_xgb.min(), yy_xgb.max())
contourax_xgb.set_xlabel('x')
contourax_xgb.set_ylabel('y')
contourax_xgb.set_xticks(())
contourax_xgb.set_yticks(())
fighistos_svm = plt.figure(figsize=(18, 7.5))
for icat in range(4):
sub_svm = fighistos_svm.add_subplot(2, 2, icat+1)
plt.hist(test_df.loc[test_df['category'] == 0]['prob_svm_{0}'.format(
icat)], bins=50, histtype='step', density=1, label='A')
plt.hist(test_df.loc[test_df['category'] == 1]['prob_svm_{0}'.format(
icat)], bins=50, histtype='step', density=1, label='B')
plt.hist(test_df.loc[test_df['category'] == 2]['prob_svm_{0}'.format(
icat)], bins=50, histtype='step', density=1, label='C')
plt.hist(test_df.loc[test_df['category'] == 3]['prob_svm_{0}'.format(
icat)], bins=50, histtype='step', density=1, label='D')
plt.xlabel('prob_svm_{0}'.format(icat))
plt.ylabel('entries')
plt.xlim(0, 1)
plt.yscale('log')
plt.grid()
plt.legend(loc='best')
fighistos_xgb = plt.figure(figsize=(18, 7.5))
for icat in range(4):
sub_xgb = fighistos_xgb.add_subplot(2, 2, icat+1)
plt.hist(test_df.loc[test_df['category'] == 0]['prob_xgb_{0}'.format(
icat)], bins=50, histtype='step', density=1, label='A')
plt.hist(test_df.loc[test_df['category'] == 1]['prob_xgb_{0}'.format(
icat)], bins=50, histtype='step', density=1, label='B')
plt.hist(test_df.loc[test_df['category'] == 2]['prob_xgb_{0}'.format(
icat)], bins=50, histtype='step', density=1, label='C')
plt.hist(test_df.loc[test_df['category'] == 3]['prob_xgb_{0}'.format(
icat)], bins=50, histtype='step', density=1, label='D')
plt.xlabel('prob_xgb_{0}'.format(icat))
plt.ylabel('entries')
plt.xlim(0, 1)
plt.yscale('log')
plt.grid()
plt.legend(loc='best')
plt.show()