Skip to content
forked from fgrosa/MLforPID

Repository for PID studies with ML

License

Notifications You must be signed in to change notification settings

sbhawani/MLforPID

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Repository for PID studies with ML

Production of data frames

  • Run PID task on grid with RunAnalysisAODVertexingHFPIDsyst.C passing a yaml configuration file for your desired data sample
  • Run getdataframesfromroot.py script to convert trees to pandas dataframe and store them in files:
python3 getdataframesfromroot.py input_root_file name_TDirectoryFile output_directory 

Basic examples

  • Binary classification with BTD (using interpret library): test_BDTinterpret.py
  • Multi-class classification with SVM using the scikit-learn library and with the xgboost library: test_multiclass.py
  • One vs. rest classification with xgboost classifier using the scikit-learn library for the one vs. rest classification: test_BDTOneVsRest.py

Plots

  • dE/dx vs. p representation in 2D plots (both data or MC):
python3 plot_hist2d.py --mc (--data) name_directory_with_files 

where name_directory_with_files is a directory that should contain the data or MC files

  • plot purity of tagged samples (from MC truth only):
python3 plot_purity.py name_directory_with_files_MC 

where name_directory_with_files_MC is a directory that should contain the MC files

Grid search:

  • Grid search for one vs. rest classifier with xgboost binary classifiers:
python3 grid_search_OvR.py name_directory_with_files
  • Grid search for multi-class classifier with xgboost:
python3 grid_search_multiclass.py name_directory_with_files

in both cases name_directory_with_files is a directory that should contain the files for the grid search (either data or MC)

Training and testing:

  • Training and testing for one vs. rest classifier with xgboost binary classifiers:
python3 OvsR_classifier_train_test.py name_directory_with_files

where name_directory_with_files is a directory that should contain the data or MC files

Data samples:

  • Data: LHC17pq_cent
  • MC (general purpose): LHC17l3b_cent
  • MC (with injected nuclei): LHC18b5a_cent

Setup git

  • git config --global user.name "<Firstname> <Lastname>"
  • git config --global user.email <your-email-address>
  • git config --global user.github <your-github-username>

About

Repository for PID studies with ML

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 89.3%
  • C 10.7%