-
Notifications
You must be signed in to change notification settings - Fork 159
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
a7ceb63
commit 93152e1
Showing
10 changed files
with
1,249 additions
and
59 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,179 @@ | ||
import math | ||
|
||
import matplotlib as mpl | ||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
import torch | ||
from HH_helper_functions import HHsimulator, calculate_summary_statistics, syn_current | ||
from torch.distributions.multivariate_normal import MultivariateNormal | ||
|
||
import sbi.utils as utils | ||
from sbi.inference import simulate_for_sbi | ||
from sbi.inference.snpe.snpe_a import SNPE_A | ||
from sbi.inference.snpe.snpe_c import SNPE_C | ||
from sbi.utils import pairplot, posterior_nn | ||
from sbi.utils.user_input_checks import prepare_for_sbi | ||
|
||
I, t_on, t_off, dt, t, A_soma = syn_current() | ||
|
||
|
||
def run_HH_model(params): | ||
params = np.asarray(params) | ||
|
||
# input current, time step | ||
I, t_on, t_off, dt, t, A_soma = syn_current() | ||
|
||
t = np.arange(0, len(I), 1) * dt | ||
|
||
# initial voltage | ||
V0 = -70 | ||
|
||
states = HHsimulator(V0, params.reshape(1, -1), dt, t, I) | ||
|
||
return dict(data=states.reshape(-1), time=t, dt=dt, I=I.reshape(-1)) | ||
|
||
|
||
def simulation_wrapper(params): | ||
""" | ||
Returns summary statistics from conductance values in `params`. | ||
Summarizes the output of the HH simulator and converts it to `torch.Tensor`. | ||
""" | ||
obs = run_HH_model(params) | ||
summstats = torch.as_tensor(calculate_summary_statistics(obs)) | ||
return summstats | ||
|
||
|
||
if __name__ == "__main__": | ||
# Configure. | ||
torch.manual_seed(0) | ||
num_sim = 300 | ||
true_params = np.array([50.0, 5.0]) | ||
labels_params = [r"$g_{Na}$", r"$g_{K}$"] | ||
observation_trace = run_HH_model(true_params) | ||
observation_summary_statistics = calculate_summary_statistics(observation_trace) | ||
method = "SNPE_A" | ||
num_rounds = 2 | ||
num_components = 4 | ||
prior_min = [0.5, 1e-4] | ||
prior_max = [80.0, 15.0] | ||
prior = utils.torchutils.BoxUniform( | ||
low=torch.as_tensor(prior_min), high=torch.as_tensor(prior_max) | ||
) | ||
|
||
# mean = torch.tensor([45, 6.5]) | ||
# cov = torch.tensor([[3 * math.sqrt(45), 0], [0, 3 * math.sqrt(6.5)]]) | ||
# prior = MultivariateNormal(loc=mean, covariance_matrix=cov) | ||
|
||
if method == "SNPE_A": | ||
density_estimator = "mdn_snpe_a" | ||
density_estimator = posterior_nn( | ||
model=density_estimator, num_components=num_components | ||
) | ||
snpe = SNPE_A(prior, density_estimator, num_components, num_rounds) | ||
|
||
else: | ||
density_estimator = "maf" | ||
density_estimator = posterior_nn( | ||
model=density_estimator, num_components=num_components | ||
) | ||
snpe = SNPE_C(prior, density_estimator) | ||
|
||
simulator, prior = prepare_for_sbi(simulation_wrapper, prior) | ||
proposal = prior | ||
|
||
fig_th, ax_th = plt.subplots(1) | ||
|
||
# Start multi-round training. | ||
for r in range(num_rounds + 1): | ||
# Simulate and append. | ||
thetas, data_sim = simulate_for_sbi( | ||
simulator=simulator, | ||
proposal=proposal, | ||
num_simulations=num_sim, | ||
num_workers=24, | ||
) | ||
snpe.append_simulations(thetas, data_sim, proposal) | ||
|
||
# Plot the sampled thetas. | ||
ax_th.scatter( | ||
x=thetas[:, 0].numpy(), y=thetas[:, 1].numpy(), label=f"round {r}", s=10 | ||
) | ||
if r == num_rounds: | ||
break | ||
|
||
# Train. | ||
density_estimator = snpe.train(retrain_from_scratch_each_round=False) | ||
|
||
if method == "SNPE_A": | ||
posterior = snpe.build_posterior( | ||
proposal=proposal, | ||
density_estimator=density_estimator, | ||
sample_with_mcmc=False, | ||
) | ||
else: | ||
posterior = snpe.build_posterior( | ||
density_estimator=density_estimator, sample_with_mcmc=False | ||
) | ||
|
||
# Pretend we obtained the perfect | ||
posterior.set_default_x(observation_summary_statistics) | ||
proposal = posterior | ||
|
||
fig = plt.figure(figsize=(7, 5)) | ||
gs = mpl.gridspec.GridSpec(2, 1, height_ratios=[4, 1]) | ||
ax = plt.subplot(gs[0]) | ||
plt.plot(observation_trace["time"], observation_trace["data"]) | ||
plt.ylabel("voltage (mV)") | ||
plt.title("observed data") | ||
plt.setp(ax, xticks=[], yticks=[-80, -20, 40]) | ||
|
||
ax = plt.subplot(gs[1]) | ||
plt.plot(observation_trace["time"], I * A_soma * 1e3, "k", lw=2) | ||
plt.xlabel("time (ms)") | ||
plt.ylabel("input (nA)") | ||
|
||
ax.set_xticks( | ||
[0, max(observation_trace["time"]) / 2, max(observation_trace["time"])] | ||
) | ||
ax.set_yticks([0, 1.1 * np.max(I * A_soma * 1e3)]) | ||
ax.yaxis.set_major_formatter(mpl.ticker.FormatStrFormatter("%.2f")) | ||
|
||
# Analysis of the posterior given the observed data | ||
samples = posterior.sample((10000,), x=observation_summary_statistics) | ||
|
||
fig, axes = pairplot( | ||
samples, | ||
limits=[[0.5, 80], [1e-4, 15.0]], | ||
ticks=[[0.5, 80], [1e-4, 15.0]], | ||
figsize=(5, 5), | ||
points=true_params, | ||
points_offdiag={"markersize": 6}, | ||
points_colors="r", | ||
) | ||
|
||
# Draw a sample from the posterior and convert to numpy for plotting. | ||
posterior_sample = posterior.sample((1,), x=observation_summary_statistics).numpy() | ||
|
||
fig = plt.figure(figsize=(7, 5)) | ||
|
||
# plot observation | ||
t = observation_trace["time"] | ||
y_obs = observation_trace["data"] | ||
plt.plot(t, y_obs, lw=2, label="observation") | ||
|
||
# simulate and plot samples | ||
x = run_HH_model(posterior_sample) | ||
plt.plot(t, x["data"], "--", lw=2, label="posterior sample") | ||
|
||
plt.xlabel("time (ms)") | ||
plt.ylabel("voltage (mV)") | ||
|
||
ax = plt.gca() | ||
handles, labels = ax.get_legend_handles_labels() | ||
ax.legend(handles[::-1], labels[::-1], bbox_to_anchor=(1.3, 1), loc="upper right") | ||
|
||
ax.set_xticks([0, 60, 120]) | ||
ax.set_yticks([-80, -20, 40]) | ||
|
||
plt.show() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.