Skip to content

MAINT compatibility sklearn 1.4 #1058

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 7 commits into from
Jan 19, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 5 additions & 5 deletions azure-pipelines.yml
Original file line number Diff line number Diff line change
Expand Up @@ -115,10 +115,10 @@ jobs:
ne(variables['Build.Reason'], 'Schedule')
)
matrix:
py38_conda_forge_openblas_ubuntu_1804:
py39_conda_forge_openblas_ubuntu_1804:
DISTRIB: 'conda'
CONDA_CHANNEL: 'conda-forge'
PYTHON_VERSION: '3.8'
PYTHON_VERSION: '3.9'
BLAS: 'openblas'
COVERAGE: 'false'

Expand Down Expand Up @@ -188,7 +188,7 @@ jobs:
pylatest_conda_tensorflow:
DISTRIB: 'conda-latest-tensorflow'
CONDA_CHANNEL: 'conda-forge'
PYTHON_VERSION: '3.8'
PYTHON_VERSION: '3.9'
TEST_DOCS: 'true'
TEST_DOCSTRINGS: 'true'
CHECK_WARNINGS: 'true'
Expand All @@ -214,7 +214,7 @@ jobs:
pylatest_conda_keras:
DISTRIB: 'conda-latest-keras'
CONDA_CHANNEL: 'conda-forge'
PYTHON_VERSION: '3.8'
PYTHON_VERSION: '3.9'
TEST_DOCS: 'true'
TEST_DOCSTRINGS: 'true'
CHECK_WARNINGS: 'true'
Expand Down Expand Up @@ -301,7 +301,7 @@ jobs:
py38_conda_forge_mkl:
DISTRIB: 'conda'
CONDA_CHANNEL: 'conda-forge'
PYTHON_VERSION: '3.8'
PYTHON_VERSION: '3.10'
CHECK_WARNINGS: 'true'
PYTHON_ARCH: '64'
PYTEST_VERSION: '*'
Expand Down
5 changes: 2 additions & 3 deletions doc/ensemble.rst
Original file line number Diff line number Diff line change
Expand Up @@ -33,8 +33,7 @@ data set, this classifier will favor the majority classes::
>>> from sklearn.ensemble import BaggingClassifier
>>> from sklearn.tree import DecisionTreeClassifier
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
>>> bc = BaggingClassifier(base_estimator=DecisionTreeClassifier(),
... random_state=0)
>>> bc = BaggingClassifier(DecisionTreeClassifier(), random_state=0)
>>> bc.fit(X_train, y_train) #doctest:
BaggingClassifier(...)
>>> y_pred = bc.predict(X_test)
Expand All @@ -50,7 +49,7 @@ sampling is controlled by the parameter `sampler` or the two parameters
:class:`~imblearn.under_sampling.RandomUnderSampler`::

>>> from imblearn.ensemble import BalancedBaggingClassifier
>>> bbc = BalancedBaggingClassifier(base_estimator=DecisionTreeClassifier(),
>>> bbc = BalancedBaggingClassifier(DecisionTreeClassifier(),
... sampling_strategy='auto',
... replacement=False,
... random_state=0)
Expand Down
4 changes: 4 additions & 0 deletions doc/whats_new/v0.12.rst
Original file line number Diff line number Diff line change
Expand Up @@ -23,9 +23,13 @@ Compatibility

- :class:`~imblearn.ensemble.BalancedRandomForestClassifier` now support missing values
and monotonic constraints if scikit-learn >= 1.4 is installed.

- :class:`~imblearn.pipeline.Pipeline` support metadata routing if scikit-learn >= 1.4
is installed.

- Compatibility with scikit-learn 1.4.
:pr:`1058` by :user:`Guillaume Lemaitre <glemaitre>`.

Deprecations
............

Expand Down
84 changes: 26 additions & 58 deletions imblearn/ensemble/_bagging.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,6 @@
# License: MIT

import copy
import inspect
import numbers
import warnings

Expand All @@ -15,6 +14,7 @@
from sklearn.ensemble import BaggingClassifier
from sklearn.ensemble._bagging import _parallel_decision_function
from sklearn.ensemble._base import _partition_estimators
from sklearn.exceptions import NotFittedError
from sklearn.tree import DecisionTreeClassifier
from sklearn.utils import parse_version
from sklearn.utils.validation import check_is_fitted
Expand Down Expand Up @@ -121,30 +121,13 @@ class BalancedBaggingClassifier(_ParamsValidationMixin, BaggingClassifier):

.. versionadded:: 0.8

base_estimator : estimator object, default=None
The base estimator to fit on random subsets of the dataset.
If None, then the base estimator is a decision tree.

.. deprecated:: 0.10
`base_estimator` was renamed to `estimator` in version 0.10 and
will be removed in 0.12.

Attributes
----------
estimator_ : estimator
The base estimator from which the ensemble is grown.

.. versionadded:: 0.10

base_estimator_ : estimator
The base estimator from which the ensemble is grown.

.. deprecated:: 1.2
`base_estimator_` is deprecated in `scikit-learn` 1.2 and will be
removed in 1.4. Use `estimator_` instead. When the minimum version
of `scikit-learn` supported by `imbalanced-learn` will reach 1.4,
this attribute will be removed.

n_features_ : int
The number of features when `fit` is performed.

Expand Down Expand Up @@ -266,7 +249,7 @@ class BalancedBaggingClassifier(_ParamsValidationMixin, BaggingClassifier):
"""

# make a deepcopy to not modify the original dictionary
if sklearn_version >= parse_version("1.3"):
if sklearn_version >= parse_version("1.4"):
_parameter_constraints = copy.deepcopy(BaggingClassifier._parameter_constraints)
else:
_parameter_constraints = copy.deepcopy(_bagging_parameter_constraints)
Expand All @@ -283,6 +266,9 @@ class BalancedBaggingClassifier(_ParamsValidationMixin, BaggingClassifier):
"sampler": [HasMethods(["fit_resample"]), None],
}
)
# TODO: remove when minimum supported version of scikit-learn is 1.4
if "base_estimator" in _parameter_constraints:
del _parameter_constraints["base_estimator"]

def __init__(
self,
Expand All @@ -301,18 +287,8 @@ def __init__(
random_state=None,
verbose=0,
sampler=None,
base_estimator="deprecated",
):
# TODO: remove when supporting scikit-learn>=1.2
bagging_classifier_signature = inspect.signature(super().__init__)
estimator_params = {"base_estimator": base_estimator}
if "estimator" in bagging_classifier_signature.parameters:
estimator_params["estimator"] = estimator
else:
self.estimator = estimator

super().__init__(
**estimator_params,
n_estimators=n_estimators,
max_samples=max_samples,
max_features=max_features,
Expand All @@ -324,6 +300,7 @@ def __init__(
random_state=random_state,
verbose=verbose,
)
self.estimator = estimator
self.sampling_strategy = sampling_strategy
self.replacement = replacement
self.sampler = sampler
Expand All @@ -349,42 +326,17 @@ def _validate_y(self, y):
def _validate_estimator(self, default=DecisionTreeClassifier()):
"""Check the estimator and the n_estimator attribute, set the
`estimator_` attribute."""
if self.estimator is not None and (
self.base_estimator not in [None, "deprecated"]
):
raise ValueError(
"Both `estimator` and `base_estimator` were set. Only set `estimator`."
)

if self.estimator is not None:
base_estimator = clone(self.estimator)
elif self.base_estimator not in [None, "deprecated"]:
warnings.warn(
"`base_estimator` was renamed to `estimator` in version 0.10 and "
"will be removed in 0.12.",
FutureWarning,
)
base_estimator = clone(self.base_estimator)
estimator = clone(self.estimator)
else:
base_estimator = clone(default)
estimator = clone(default)

if self.sampler_._sampling_type != "bypass":
self.sampler_.set_params(sampling_strategy=self._sampling_strategy)

self._estimator = Pipeline(
[("sampler", self.sampler_), ("classifier", base_estimator)]
self.estimator_ = Pipeline(
[("sampler", self.sampler_), ("classifier", estimator)]
)
try:
# scikit-learn < 1.2
self.base_estimator_ = self._estimator
except AttributeError:
pass

# TODO: remove when supporting scikit-learn>=1.4
@property
def estimator_(self):
"""Estimator used to grow the ensemble."""
return self._estimator

# TODO: remove when supporting scikit-learn>=1.2
@property
Expand Down Expand Up @@ -483,6 +435,22 @@ def decision_function(self, X):

return decisions

@property
def base_estimator_(self):
"""Attribute for older sklearn version compatibility."""
error = AttributeError(
f"{self.__class__.__name__} object has no attribute 'base_estimator_'."
)
if sklearn_version < parse_version("1.2"):
# The base class require to have the attribute defined. For scikit-learn
# > 1.2, we are going to raise an error.
try:
check_is_fitted(self)
return self.estimator_
except NotFittedError:
raise error
raise error

def _more_tags(self):
tags = super()._more_tags()
tags_key = "_xfail_checks"
Expand Down
Loading