Skip to content

scliubit/complex-DnCNN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

a2dabd1 · May 3, 2023

History

11 Commits
May 3, 2023
Mar 8, 2022
Mar 8, 2022
Dec 8, 2022
Mar 8, 2022
Jan 17, 2022
Mar 8, 2022
Mar 8, 2022
Mar 8, 2022

Repository files navigation

complex-valued DnCNN

Source code for Deep Denoising Neural Network Assisted Compressive Channel Estimation for mmWave Intelligent Reflecting Surfaces, modified from DnCNN.

S. Liu, Z. Gao, J. Zhang, M. D. Renzo and M. -S. Alouini, "Deep Denoising Neural Network Assisted Compressive Channel Estimation for mmWave Intelligent Reflecting Surfaces," in IEEE Transactions on Vehicular Technology, vol. 69, no. 8, pp. 9223-9228, Aug. 2020, doi: 10.1109/TVT.2020.3005402.

To successfully run the code, you should follow the steps below

  • Make sure you have installed the required libs

  • Generate channel dataset. We have used the geometric channel model in our paper with vary parameters.

Note that the required shape is [ N , 2 , N I R S , N C ] , where 2 represents the real part and imaginary part of the channel matrix.

  • Set the parameters in modelTrain.py and create the corresponding folders before running the program.
  • If you want to evalutate the performance, please change the dataset configurations in modelTrain.py

文章 Deep Denoising Neural Network Assisted Compressive Channel Estimation for mmWave Intelligent Reflecting Surfaces 的源代码, 由 DnCNN 等修改。

为保证成功运行,您应按照以下步骤进行

  • 确保您已安装所有需要的库
  • 产生一组信道数据集。此处我们采用几何信道建模,参数在仿真中有变。

值得注意的是,信道数据集的尺寸要求为$[N,2,N_{IRS},N_{C}]$,其中2代表信道矩阵的实部和虚部。

  • 运行modelTrain.py进行训练,在这之前要设置合适的参数(用于区别保存模型时的路径)。
  • 若需要测试性能表现,请将训练文件中的数据集配置换成测试集

原文采用OMP算法构造数据集,该部分代码可能在后续整理中发布。

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published