Skip to content

Latest commit

 

History

History
101 lines (82 loc) · 3.8 KB

README.md

File metadata and controls

101 lines (82 loc) · 3.8 KB

CQL

A simple and modular implementation of the Conservative Q Learning and Soft Actor Critic algorithm in PyTorch.

Installation

  1. Install and use the included Ananconda environment
$ conda env create -f environment.yml
$ source activate SimpleSAC

You'll need to download a MuJoCo key if you want to use a MuJoCo version <= 200.

  1. Add this repo directory to your PYTHONPATH environment variable.
export PYTHONPATH="$PYTHONPATH:$(pwd)"

Run Experiments

You can run SAC experiments using the following command:

python -m SimpleSAC.sac_main \
    --env 'HalfCheetah-v2' \
    --logging.output_dir './experiment_output' \
    --device='cuda'

All available command options can be seen in SimpleSAC/conservative_sac_main.py and SimpleSAC/conservative_sac.py.

You can run CQL experiments using the following command:

python -m SimpleSAC.conservative_sac_main \
    --env 'halfcheetah-medium-v0' \
    --logging.output_dir './experiment_output' \
    --device='cuda'

If you want to run on CPU only, just omit the --device='cuda' part. All available command options can be seen in SimpleSAC/sac_main.py and SimpleSAC/sac.py.

Visualize Experiments

You can visualize the experiment metrics with viskit:

python -m viskit './experiment_output'

and simply navigate to http://localhost:5000/

Weights and Biases Online Visualization Integration

This codebase can also log to W&B online visualization platform. To log to W&B, you first need to set your W&B API key environment variable:

export WANDB_API_KEY='YOUR W&B API KEY HERE'

Then you can run experiments with W&B logging turned on:

python -m SimpleSAC.conservative_sac_main \
    --env 'halfcheetah-medium-v0' \
    --logging.output_dir './experiment_output' \
    --device='cuda' \
    --logging.online

Run CQL in AntMaze

To run CQL in AntMaze with the hyperparameters recommended by CQL's authors (documented in their implementation of CQL), use the following command:

python -m SimpleSAC.conservative_sac_main \
    --n_epochs 1000 \
    --eval_period 100 \
    --eval_n_trajs 100 \
    --policy_arch '256-256-256' \
    --qf_arch '256-256-256' \
    --cql.policy_lr 1e-4 \
    --cql.cql_lagrange \
    --cql.cql_target_action_gap 5.0 \
    --cql.cql_min_q_weight 5.0 \
    --logging.output_dir './experiment_output' \
    --device='cuda' \
    --logging.project 'cql' \
    --logging.online \
    --env antmaze-umaze-v2 \
    --max_traj_length 700 \
    --seed 0

Note that you should change the --env, --max_traj_length, and seed flags as appropriate. antmaze-umaze-v2 and antmaze-umaze-diverse-v2 should have a max_traj_length of 700 whereas antmaze-medium-play-v2, antmaze-medium-diverse-v2, antmaze-large-play-v2, and antmaze-large-diverse-v2 should have a max_traj_length of 1000.

Results of Running CQL on D4RL Environments

In order to save your time and compute resources, I've done a sweep of CQL on certain D4RL environments with various min Q weight values. The results can be seen here. You can choose the environment to visualize by filtering on env. The results for each cql.cql_min_q_weight on each env is repeated and average across 3 random seeds.

Credits

The project organization is inspired by TD3. The SAC implementation is based on rlkit. THe CQL implementation is based on CQL. The viskit visualization is taken from viskit, which is taken from rllab.