A simple and modular implementation of the Conservative Q Learning and Soft Actor Critic algorithm in PyTorch.
- Install and use the included Ananconda environment
$ conda env create -f environment.yml
$ source activate SimpleSAC
You'll need to download a MuJoCo key if you want to use a MuJoCo version <= 200.
- Add this repo directory to your
PYTHONPATH
environment variable.
export PYTHONPATH="$PYTHONPATH:$(pwd)"
You can run SAC experiments using the following command:
python -m SimpleSAC.sac_main \
--env 'HalfCheetah-v2' \
--logging.output_dir './experiment_output' \
--device='cuda'
All available command options can be seen in SimpleSAC/conservative_sac_main.py and SimpleSAC/conservative_sac.py.
You can run CQL experiments using the following command:
python -m SimpleSAC.conservative_sac_main \
--env 'halfcheetah-medium-v0' \
--logging.output_dir './experiment_output' \
--device='cuda'
If you want to run on CPU only, just omit the --device='cuda'
part.
All available command options can be seen in SimpleSAC/sac_main.py and SimpleSAC/sac.py.
You can visualize the experiment metrics with viskit:
python -m viskit './experiment_output'
and simply navigate to http://localhost:5000/
This codebase can also log to W&B online visualization platform. To log to W&B, you first need to set your W&B API key environment variable:
export WANDB_API_KEY='YOUR W&B API KEY HERE'
Then you can run experiments with W&B logging turned on:
python -m SimpleSAC.conservative_sac_main \
--env 'halfcheetah-medium-v0' \
--logging.output_dir './experiment_output' \
--device='cuda' \
--logging.online
To run CQL in AntMaze with the hyperparameters recommended by CQL's authors (documented in their implementation of CQL), use the following command:
python -m SimpleSAC.conservative_sac_main \
--n_epochs 1000 \
--eval_period 100 \
--eval_n_trajs 100 \
--policy_arch '256-256-256' \
--qf_arch '256-256-256' \
--cql.policy_lr 1e-4 \
--cql.cql_lagrange \
--cql.cql_target_action_gap 5.0 \
--cql.cql_min_q_weight 5.0 \
--logging.output_dir './experiment_output' \
--device='cuda' \
--logging.project 'cql' \
--logging.online \
--env antmaze-umaze-v2 \
--max_traj_length 700 \
--seed 0
Note that you should change the --env
, --max_traj_length
, and seed
flags as appropriate. antmaze-umaze-v2
and antmaze-umaze-diverse-v2
should have a max_traj_length
of 700 whereas antmaze-medium-play-v2
, antmaze-medium-diverse-v2
, antmaze-large-play-v2
, and antmaze-large-diverse-v2
should have a max_traj_length
of 1000.
In order to save your time and compute resources, I've done a sweep of CQL on certain
D4RL environments with various min Q weight values. The results can be seen here.
You can choose the environment to visualize by filtering on env
. The results for each cql.cql_min_q_weight
on each env
is repeated and average across 3 random seeds.
The project organization is inspired by TD3. The SAC implementation is based on rlkit. THe CQL implementation is based on CQL. The viskit visualization is taken from viskit, which is taken from rllab.