Skip to content

scrapinghub/python-simhash

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 

Repository files navigation

simhash

This is an efficient implementation of some functions that are useful for implementing near duplicate detection based on Charikar's simhash. It is a python module, written in C with GCC extentions, and includes the following functions:

fingerprint
Generates a fingerprint from a sequence of hashes
weighted_fingerprint
Generate a fingerprint from a sequence of (long long, weight) tuples
fnvhash
Generates a (FNV-1a) hash from a string
hamming_distance
Calculate the number of bits that differ between 2 long long integers
simpair_indices
Find the indices of hashes in a sequence that differ by less than a certain number of bits. It includes arguments for rotating and grouping hashes. It can be used to help efficiently implement online or batch near duplicate detection, for example as described in Detecting Near-Duplicates for Web Crawling by Gurmeet Manku, Arvind Jain, and Anish Sarma.

Example usage

Generate hashes:

>>> from simhash import fingerprint
>>> hash1 = fingerprint(map(hash, "some text we want to hash"))
>>> hash2 = fingerprint(map(hash, "some more text we want to hash"))

Measure distance between hashes:

>>> from simhash import hamming_distance
>>> hamming_distance(hash1, hash2)
2L

This code was used from mapreduce jobs against a large dataset of webpages as part of a prototype at Scrapinghub.

About

An efficient simhash implementation for python

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •