Skip to content

Commit

Permalink
[sml] add PCA in jax (#240)
Browse files Browse the repository at this point in the history
[Solve] 使用 SPU 实现主成分分析基础功能
1. 完成了fit, transform的基础功能;
2. 实现了设置主成分和查看方差的功能;
3. 通过了在 spsim 和 emulator 的 unittest。
  • Loading branch information
hacker-jerry authored Jul 14, 2023
1 parent a4e7344 commit ce318f0
Show file tree
Hide file tree
Showing 4 changed files with 403 additions and 0 deletions.
49 changes: 49 additions & 0 deletions sml/pca/BUILD.bazel
Original file line number Diff line number Diff line change
@@ -0,0 +1,49 @@
# Copyright 2023 Ant Group Co., Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

load("@rules_python//python:defs.bzl", "py_binary", "py_library", "py_test")

package(default_visibility = ["//visibility:public"])

py_library(
name = "simple_pca",
srcs = ["simple_pca.py"],
deps = [
"//sml/utils:fxp_approx",
],
)

py_binary(
name = "simple_pca_emul",
srcs = ["simple_pca_emul.py"],
deps = [
":simple_pca",
"//examples/python/utils:dataset_utils", # FIXME: remove examples dependency
"//sml/utils:emulation",
],
)

py_test(
name = "simple_pca_test",
srcs = ["simple_pca_test.py"],
data = [
"//examples/python/conf", # FIXME: remove examples dependency
],
deps = [
":simple_pca",
"//examples/python/utils:dataset_utils", # FIXME: remove examples dependency
"//spu:init",
"//spu/utils:simulation",
],
)
151 changes: 151 additions & 0 deletions sml/pca/simple_pca.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,151 @@
# Copyright 2023 Ant Group Co., Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import jax
import jax.numpy as jnp
from enum import Enum

class Method(Enum):
PCA = 'power_iteration'


class SimplePCA:
def __init__(
self,
method: str,
n_components: int,
max_iter: int = 100,
):
"""A PCA estimator implemented with Power Iteration.
Parameters
----------
method : str
The method to compute the principal components.
'power_iteration' uses Power Iteration to compute the eigenvalues and eigenvectors.
n_components : int
Number of components to keep.
max_iter : int, default=100
Maximum number of iterations for Power Iteration.
References
----------
Power Iteration: https://en.wikipedia.org/wiki/Power_iteration
"""
# parameter check.
assert n_components > 0, f"n_components should >0"
assert method in [
e.value for e in Method
], f"method should in {[e.value for e in Method]}, but got {method}"

self._n_components = n_components
self._max_iter = max_iter
self._mean = None
self._components = None
self._variances = None
self._method = Method(method)

def fit(self, X):
"""Fit the estimator to the data.
In the 'power_iteration' method, we use the Power Iteration algorithm to compute the eigenvalues and eigenvectors.
The Power Iteration algorithm works by repeatedly multiplying a vector by the matrix to inflate the largest eigenvalue,
and then normalizing to keep numerical stability.
After finding the largest eigenvalue and eigenvector, we deflate the matrix by subtracting the outer product of the
eigenvector and itself, scaled by the eigenvalue. This leaves a matrix with the same eigenvectors, but the largest
eigenvalue is replaced by zero.
Parameters
----------
X : {array-like}, shape (n_samples, n_features)
Training data.
Returns
-------
self : object
Returns an instance of self.
"""
assert len(X.shape) == 2, f"Expected X to be 2 dimensional array, got {X.shape}"

self._mean = jnp.mean(X, axis=0)
X_centered = X - self._mean

# The covariance matrix
cov_matrix = jnp.cov(X_centered, rowvar=False)

# Initialization
components = []
variances = []

for _ in range(self._n_components):
# Initialize a random vector
vec = jnp.ones((X_centered.shape[1],))

for _ in range(self._max_iter): # Max iterations
# Power iteration
vec = jnp.dot(cov_matrix, vec)
vec /= jnp.linalg.norm(vec)

# Compute the corresponding eigenvalue
eigval = jnp.dot(vec.T, jnp.dot(cov_matrix, vec))

components.append(vec)
variances.append(eigval)

# Remove the component from the covariance matrix
cov_matrix -= eigval * jnp.outer(vec, vec)

self._components = jnp.column_stack(components)
self._variances = jnp.array(variances)

return self

def transform(self, X):
"""Transform the data to the first `n_components` principal components.
Parameters
----------
X : {array-like}, shape (n_samples, n_features)
Data to be transformed.
Returns
-------
X_transformed : array, shape (n_samples, n_components)
Transformed data.
"""
assert len(X.shape) == 2, f"Expected X to be 2 dimensional array, got {X.shape}"

X = X - self._mean
return jnp.dot(X, self._components)

def inverse_transform(self, X_transformed):
"""Transform the data back to the original space.
Parameters
----------
X_transformed : {array-like}, shape (n_samples, n_components)
Data in the transformed space.
Returns
-------
X_original : array, shape (n_samples, n_features)
Data in the original space.
"""
assert len(X_transformed.shape) == 2, f"Expected X_transformed to be 2 dimensional array, got {X_transformed.shape}"

X_original = jnp.dot(X_transformed, self._components.T) + self._mean

return X_original
100 changes: 100 additions & 0 deletions sml/pca/simple_pca_emul.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,100 @@
# Copyright 2023 Ant Group Co., Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import os

import jax.numpy as jnp
import jax.random as random
import numpy as np
from sklearn.decomposition import PCA as SklearnPCA
# from sklearn.metrics import roc_auc_score, explained_variance_score

# Add the library directory to the path
sys.path.append(os.path.join(os.path.dirname(__file__), '../../'))

import sml.utils.emulation as emulation
from sml.pca.simple_pca import SimplePCA


# TODO: design the enumation framework, just like py.unittest
# all emulation action should begin with `emul_` (for reflection)
def emul_SimplePCA(mode: emulation.Mode.MULTIPROCESS):
def proc(X):
model = SimplePCA(
method='power_iteration',
n_components=2,
)

model.fit(X)
X_transformed = model.transform(X)
X_variances = model._variances

return X_transformed, X_variances

def proc_reconstruct(X):
model = SimplePCA(
method='power_iteration',
n_components=2,
)

model.fit(X)
X_reconstructed = model.inverse_transform(model.transform(X))

return X_reconstructed

try:
# bandwidth and latency only work for docker mode
emulator = emulation.Emulator(
emulation.CLUSTER_ABY3_3PC, mode, bandwidth=300, latency=20
)
emulator.up()
# Create a simple dataset
X = random.normal(random.PRNGKey(0), (15, 100))
result = emulator.run(proc)(X)
print("X_transformed_jax: ", result[0])
print("X_transformed_jax: ", result[1])
# The transformed data should have 2 dimensions
assert result[0].shape[1] == 2
# The mean of the transformed data should be approximately 0
assert jnp.allclose(jnp.mean(result[0], axis=0), 0, atol=1e-3)

# Compare with sklearn
model = SklearnPCA(n_components=2)
model.fit(X)
X_transformed = model.transform(X)
X_variances = model.explained_variance_

print("X_transformed_sklearn: ", X_transformed)
print("X_variances_sklearn: ", X_variances)

result = emulator.run(proc_reconstruct)(X)

print("X_reconstructed_jax: ", result)

# Compare with sklearn
model = SklearnPCA(n_components=2)
model.fit(X)
X_reconstructed = model.inverse_transform(model.transform(X))

print("X_reconstructed_sklearn: ", X_reconstructed)

assert np.allclose(X_reconstructed, result, atol=1e-3)

finally:
emulator.down()


if __name__ == "__main__":
emul_SimplePCA(emulation.Mode.MULTIPROCESS)
Loading

0 comments on commit ce318f0

Please sign in to comment.