Skip to content

seffka/ACE2017

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ACE2017

Repository with scripts to reproduce some results from my 2017 MIR course student blog: https://musicinformationretrieval.wordpress.com/category/audio-chord-detection/

To run most of the scripts you'll need:

  1. Linux-like or Mac OS X system with standard tools (shell, awk) and python 2.7.
  2. two directories which represents chord-annotated audio dataset:
    • with 'wav' audio files (perhaps other formats (e.g. .flac) will work as well)
    • MIREX-style 'lab' files with chord annotations. Every file in one directory should be matched to a file in another directory by name (e.g.: /chains.wav corresponds to /chains.lab)
  3. https://github.com/jpauwels/MusOOEvaluator compiled, with its' executable path added to the PATH environment variable.
  4. Essentia (http://essentia.upf.edu/documentation/)
  5. numpy python package (http://www.numpy.org)
  6. vamp python package (https://pypi.python.org/pypi/vamp/1.0.0)

Additional dependencies are listed for each section.

I. State of the Art Audio Chord Estimation algorithms evaluation

(https://musicinformationretrieval.wordpress.com/2017/03/06/state-of-the-art-audio-chord-estimation-algorithms-evaluation/)

Dependencies:

  1. madmom python package (https://github.com/CPJKU/madmom)
  2. Essentia (http://essentia.upf.edu/documentation/)
  3. Chordino vamp plugin (http://www.isophonics.net/nnls-chroma)

How to run:

  1. Chordino algorithm evaluation e.g.: ./run_chordino.sh audio chordannotations
  2. Madmom algorithm evaluation e.g.: ./run_madmom.sh audio chordannotations
  3. Essentia ChordsDetection algorithm evaluation e.g.: ./run_essentia.sh audio chordannotations
  4. Essentia ChordsDetectionBeats algorithm evaluation e.g.: ./run_essentia_beats.sh audio chordannotations

NOTE: scripts for this part have hardcoded file paths which must be manually edited.

Dependencies:

  1. Lame library for MP3 compression test (http://lame.sourceforge.net)
  2. ffmpeg library for downsampling test (http://lame.sourceforge.net)
  3. MATLAB and AudioDegradationToolbox for vynil effect test (https://code.soundsoftware.ac.uk/projects/audio-degradation-toolbox)
  4. Audacity for pitch sift test (http://www.audacityteam.org)

How to run:

  1. For MP3 and downsampling edit pathes and run degrader.py
  2. For vynil effect run vynil.m from MATLAB
  3. For pitch shift use Audacity GUI
  4. For evaluation use run_on_degraded.sh, run_on_vynil.sh, run_on_shifted.sh.

III. Chroma features evaluation (http://TODO)

Dependencies:

  1. for NNLS chroma: Chroma NNLS vamp plugin (http://www.isophonics.net/nnls-chroma)
  2. for librosa: librosa python package (https://github.com/librosa/librosa)
  3. for ChromaToolbox CLP and CRP features: MATLAB and Chroma Toolbox (http://resources.mpi-inf.mpg.de/MIR/chromatoolbox

How to run:

  1. run_essentia_beats.sh for HPCP chroma features
  2. run_nnls.sh for NNLS chroma
  3. for CLP and CRP:
    • run extract_muller_features.m from MATLAB (manually edit hardcoded paths first).
    • ./run_clp.sh specifying obtained chroma directory and extension (either .clp or .crp).
  4. for librosa: modify run_essentia_beats.sh (uncomment librosa related sections).

IV. Intermediate improvements (http://TODO)

Dependencies:

  1. for NNLS chroma: Chroma NNLS vamp plugin (http://www.isophonics.net/nnls-chroma)
  2. madmom python package (https://github.com/CPJKU/madmom)
  3. Essentia with patched ChordsDetectionBeats algorithm (57284ab08b1bd93b24ef6b56dc7ccef5c6259d3c) should be used for second and third improvements.

Improvements:

  1. NNLS chroma plugged instead of HPCP: run_nnls.sh
  2. Chroma smoothed (by convolution with hanning window), sampled on every beat: run_essentia_beats_hacked.sh
  3. BeatTrackerMultiFeature replaced with madmom's DBN beats: run_essentia_dbn_beats.sh
  4. Template mapping pseudoprobabilities plugged into HMM: run_improved.sh

V. Final Algorithm (http://TODO)

Dependencies:

  1. madmom python package (https://github.com/CPJKU/madmom)
  2. Chroma NNLS vamp plugin (http://www.isophonics.net/nnls-chroma)

How to run:

  1. Prepare directory with chroma and beat tracking data (in order to save time later on chord detection re-run with different parameter sets), e.g.: python prepare.py audio npz_dir
  2. Run the algorithm evaluation, e.g.: ./run_improved.sh npz_dir chordannotations
  3. find results in directory: IMPROVED_output_audio

VI. Plots (some of the plots used in the blog are generated with scripts from 'plot' directory)

Dependencies:

  • matplotlib and seaborn python packages.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published