Referring Expression Segmentation with Instance-aware Visual Priors
We recommended the following dependencies.
- Python 3.6
- Numpy
- Dataset Preprocessing
We conduct experiments on 4 datasets of referring image segmentation, including UNC
, UNC+
, Gref
and ReferIt
. After downloading these datasets, you can run the following commands for data preparation:
python build_batches.py -d Gref -t train
python build_batches.py -d Gref -t val
python build_batches.py -d unc -t train
python build_batches.py -d unc -t val
python build_batches.py -d unc -t testA
python build_batches.py -d unc -t testB
python build_batches.py -d unc+ -t train
python build_batches.py -d unc+ -t val
python build_batches.py -d unc+ -t testA
python build_batches.py -d unc+ -t testB
python build_batches.py -d referit -t trainval
python build_batches.py -d referit -t test
Train on UNC training set with:
python train.py --config-file configs/my_Model_soft2-unc-3x.yaml --num-gpus 4
Test on UNC validation set with:
python train.py --config-file configs/my_Model_soft2-unc-3x.yaml --num-gpus 4 --eval-only MODEL.WEIGHTS ./output/my_Model_soft2_ab2/unc/1x/model_final.pth DATASETS.TEST \(\"unc_val\",\)
Pending...
Get visualization results with:
python myvis.py --config-file configs/my_Model_soft2-unc-3x.yaml --num-gpus 1 MODEL.WEIGHTS ./output/my_Model_soft2_ab2/unc/1x/model_final.pth DATASETS.TEST \(\"unc_val\",\)
Pending...