Skip to content

sekilab/Pseudo-PFLOW

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

31 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Develop Pseudo PFlow

DSPFlow is a data processing framework designed for converting complex datasets into meaningful insights through a series of processing steps.

Prerequisites

Before running the program, ensure Maven 3.6.3 is installed as versions after 3.8 might not be compatible with this project. Follow these steps to install Maven 3.6.3:

  1. Download Maven 3.6.3:

    wget https://archive.apache.org/dist/maven/maven-3/3.6.3/binaries/apache-maven-3.6.3-bin.tar.gz
  2. Extract the archive to /opt:

    sudo tar -xvzf apache-maven-3.6.3-bin.tar.gz -C /opt
  3. Add Maven to your environment variables:

    export M2_HOME=/opt/apache-maven-3.6.3
    export MAVEN_HOME=/opt/apache-maven-3.6.3
    export PATH=$PATH:$M2_HOME/bin
  4. Verify the Maven installation:

    mvn --version

Configuring IntelliJ IDEA to Use Maven 3.6.3

  • Open File > Settings (or IntelliJ IDEA > Preferences on macOS).
  • Navigate to Build, Execution, Deployment > Build Tools > Maven.
  • Ensure the Maven home directory points to your installed Maven directory (/opt/apache-maven-3.6.3).
  • Click OK or Apply to apply the changes.

Troubleshooting Maven Environment

If you encounter any issues with Maven configuration or dependencies are not being correctly downloaded, contact the project administrator for a backup of the .m2/repository directory, which contains all the necessary dependencies. To use the backup:

  1. Extract the backup .m2/repository directory.
  2. Copy it into your local .m2 directory, usually located at ~/.m2/ on UNIX-like systems or C:\Users\<YourUsername>\.m2\ on Windows.
  3. Merge the directory if it already exists to ensure no existing dependencies are lost.

Adding pflowlib.jar to Libraries

If pflowlib.jar needs to be included in the project:

  • Open File > Project Structure in IntelliJ IDEA.
  • Go to Libraries and click the + sign to add a new library.
  • Navigate to the location of pflowlib.jar, select it, and add it to the project.

Ensure Correct Run Configuration

If you face issues with Run Configuration:

  • Check Project Structure > Modules and ensure the Sources and Resources tags are set correctly for your project directories.
  • Under Paths, confirm the Output path and Test output path are directed to the intended directories, usually target/classes and target/test-classes.

0. Data prosessing

Processing steps

Household data -> Person data-> Activity data -> Trip data -> Trajectory dat -> Aggregated data

Dataset for processing

Please download the dataset from S3://pseudo-pflow/processing
The dasetset was created from various statistical data.
Each processing step references files in the dataset.

1. Create person data from household data developed by Kajiwara

Each person is assigned a role(workder, student, no-worker).

  • Entry point: pseudo.pre.PersonGenerator
  • Input
    • pre_labor_rate.csv: Output of pseudo.pre.CensusKakou2
    • pre_holiday_rate.csv: Data from Survey on time use and leisure activities
    • pre_enrollment_rate.csv: Data from School Basic Survey
    • househould data developed by Kajiwara
  • Output
    • Person data in CSV format

2. Create activity data for commuter

  • Entry point: pseudo.gen.Commuter
  • Input
    • base_station.csv: Location of stations
    • city_boundary.csv: City boundary data
    • city_census_od.csv: Output of pseudo.pre.CensusKakou1
    • city_hospital data: Location of hospitals
    • mesh_ecensus: Mesh-based economic census data
    • city_tatemono: Tatamono data from Zenrin
    • tky2008_trip_01-10_labor_male_prob.csv: Markov chain parameters calculated from PT data
    • tky2008_trip_01-10_labor_female_prob.csv: Markov chain parameters calculated from PT data
    • labor_params.csv: MNL parmaters calculate for location choice from PT data
  • Output
    • Activity data in CSV format

3. Create activity data for student

  • Entry point: pseudo.gen.Student
  • Input
    • base_station.csv: Location of stations
    • city_boundary.csv: City boundary data
    • city_hospital data: Location of hospitals
    • city_pre_school: Location of preschools
    • city_school.csv: Location of schools
    • mesh_ecensus: Mesh-based economic census data
    • city_tatemono: Tatamono data from Zenrin
    • tky2008_trip_11-11_student1_prob.csv: Markov chain parameters calculated from PT data
    • tky2008_trip_12-13_student2_prob.csv: Markov chain parameters calculated from PT data
    • nolabor_params.csv: MNL parmaters calculate for location choice from PT data
    • primary_*.csv: Map of households and school destinations
    • secondary_*.csv: Map of households and school destinations
  • Output
    • Activity data in CSV format

4. Create activity data for no-worker

  • Entry point: pseudo.gen.NonCommuter
  • Input
    • base_station.csv: Location of stations
    • city_boundary.csv: City boundary data
    • city_hospital data: Location of hospitals
    • mesh_ecensus: Mesh-based economic census data
    • city_tatemono: Tatamono data from Zenrin
    • tky2008_trip_14-15_nolabor_male_prob.csv: Markov chain parameters calculated from PT data
    • tky2008_trip_14-15_nolabor_female_prob.csv: Markov chain parameters calculated from PT data
    • tky2008_trip_14-15_nolabor_male_senior_prob.csv: Markov chain parameters calculated from PT data
    • tky2008_trip_14-15_nolabor_female_senior_prob.csv: Markov chain parameters calculated from PT data
    • nolabor_params.csv: MNL parmaters calculate for location choice from PT data
  • Output
    • Activity data in CSV format

5. Create trip data from activity data

  • Entry point: pseudo.gen.TripGenerator
  • Input
    • city_boundary.csv: City boundary data
    • base_station.csv: Location of stations
    • act_transport.csv: Traffic sharing rate from National PT survey
    • activity: Result of No. 3, 4, 5
  • Output
    • Trip data in CSV format

6. Create trajectory data from trip data

  • Entry point: pseudo.gen.TrajectoryGenerator
  • Input
    • drm_*.tsv: Road network data
    • railnetwork.tsv: Railway network data
    • act_transport.csv: Traffic sharing rate from National PT survey
    • trip: Result of No. 5
  • Output
    • Trajectory data in CSV format

7. Create zip file of trajectory for each city

  • Entry point: pseudo.gen.TripJoinner
  • Input
    • trajectory : Result of No. 6
  • Output
    • ZIP-compressed trajectory data for each city

8. Create mesh population data from trajectory data

  • Entry point: pseudo.aggr.MeshVolumeCalculator2
  • Input
    • trajectory : Result of No. 6
  • Output
    • 500x500m grid population every 10 minutes

9. Create link volume data from trajectory data

  • Entry point: pseudo.aggr.LinkVolumeCalculator
  • Input
    • trajectory : Result of No. 6
  • Output
    • The number of people passing by each link every hou

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published