Skip to content

Code for our paper "On Out-of-distribution detection with Energy-based Models" accepted to the ICML 2021 Workshop on Uncertainty & Robustness in Deep Learning.

Notifications You must be signed in to change notification settings

selflein/EBM-OOD-Detection

Repository files navigation

On Out-of-distribution Detection with Energy-based Models

This repository contains the code for the experiments conducted in the paper

On Out-of-distribution Detection with Energy-based Models
Sven Elflein, Bertrand Charpentier, Daniel Zügner, Stephan Günnemann
ICML 2021, Workshop on Uncertainty & Robustness in Deep Learning.

Setup

conda create --name env --file req.txt
conda activate env
pip install git+https://github.com/selflein/nn_uncertainty_eval

Datasets

The image datasets should download automatically. For "Sensorless Drive" and "Segment" pre-processed .csv files can be downloaded from the PostNet repo under "Training & Evaluation".

Training & Evaluation

In order to train a model use the respective combination of configurations for dataset and model, e.g.,

python uncertainty_est/train.py fixed.output_folder=./path/to/output/folder dataset=sensorless model=fc_mcmc

to train a EBM with MCMC on the Sensorless dataset. See configs/model for all model configurations.

In order to evaluate models use

python uncertainty_est/evaluate.py --checkpoint-dir ./path/to/directory/with/models --output-folder ./path/to/output/folder

This script generates CSVs with the respective OOD metrics.

Cite

If you find our work helpful, please consider citing our paper in your own work.

@misc{elflein2021outofdistribution,
      title={On Out-of-distribution Detection with Energy-based Models},
      author={Sven Elflein and Bertrand Charpentier and Daniel Zügner and Stephan Günnemann},
      year={2021},
      eprint={2107.08785},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Acknowledgements

About

Code for our paper "On Out-of-distribution detection with Energy-based Models" accepted to the ICML 2021 Workshop on Uncertainty & Robustness in Deep Learning.

Topics

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages