Skip to content

seon92/Chainization

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Chainization

Official pytorch implementation of ECCV 2022 paper, "Order Learning Using Partially Ordered Data via Chainization."

Dependencies

  • Python 3.8
  • Pytorch 1.7.1

Datasets

  • For MORPH II experiments, we follow the same fold settings in this OL repo.
  • For Adience experiments, we follow the official splits.

Quick Start : Train Model on Random Edge Cases

You can adjust supervision ratio by changing 'info_ratio' in the parse_option function.

  • for Adience dataset

    $ python train_chainize_adience.py 
  • for MORPH II dataset

    $ python train_chainize_morph.py

Referecences

  1. FixMatch
  2. POE

About

ECCV 2022

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages