Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Made proper_function_call static and moved get_proper_function_reference to Environment to prove to the compiler that mutable references don't overlap #639

Merged
merged 1 commit into from
Nov 3, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions numbat/src/typechecker/constraints.rs
Original file line number Diff line number Diff line change
Expand Up @@ -68,6 +68,14 @@ impl ConstraintSet {
result
}

pub(crate) fn add_equal_constraint(&mut self, lhs: &Type, rhs: &Type) -> TrivialResolution {
self.add(Constraint::Equal(lhs.clone(), rhs.clone()))
}

pub(crate) fn add_dtype_constraint(&mut self, type_: &Type) -> TrivialResolution {
self.add(Constraint::IsDType(type_.clone()))
}

pub fn clear(&mut self) {
self.constraints.clear();
}
Expand Down
12 changes: 12 additions & 0 deletions numbat/src/typechecker/environment.rs
Original file line number Diff line number Diff line change
Expand Up @@ -183,6 +183,18 @@ impl Environment {
}
}
}

pub(crate) fn get_proper_function_reference<'a>(
&self,
expr: &crate::ast::Expression<'a>,
) -> Option<(&'a str, &FunctionSignature)> {
match expr {
crate::ast::Expression::Identifier(_, name) => self
.get_function_info(name)
.map(|(signature, _)| (*name, signature)),
_ => None,
}
}
}

impl ApplySubstitution for Environment {
Expand Down
272 changes: 138 additions & 134 deletions numbat/src/typechecker/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,131 @@ fn dtype(e: &Expression) -> Result<DType> {
}
}

struct ProperFunctionCallArgs<'a, 'b> {
registry: &'b DimensionRegistry,
constraints: &'b mut ConstraintSet,
name_generator: &'b mut NameGenerator,
span: &'b Span,
full_span: &'b Span,
function_name: &'a str,
signature: &'b FunctionSignature,
arguments: Vec<typed_ast::Expression<'a>>,
argument_types: Vec<Type>,
}

fn proper_function_call<'a>(
ProperFunctionCallArgs {
registry,
constraints,
name_generator,
span,
full_span,
function_name,
signature,
arguments,
argument_types,
}: ProperFunctionCallArgs<'a, '_>,
) -> Result<typed_ast::Expression<'a>> {
let FunctionSignature {
name: _,
definition_span,
type_parameters: _,
parameters,
return_type_annotation: _,
fn_type,
} = signature;

let fn_type = match fn_type {
TypeScheme::Concrete(t) => {
// This branch is needed for recursive functions, where the type of the function
// is not yet known (and not yet quantified).
t.clone()
}
TypeScheme::Quantified(_, _) => {
let qt = fn_type.instantiate(name_generator);

for Bound::IsDim(t) in qt.bounds.iter() {
constraints.add_dtype_constraint(t).ok();
}

qt.inner
}
};

let Type::Fn(parameter_types, return_type) = fn_type else {
unreachable!("Expected function type, got {:#?}", fn_type);
};

let arity_range = parameters.len()..=parameters.len();

if !arity_range.contains(&arguments.len()) {
return Err(Box::new(TypeCheckError::WrongArity {
callable_span: *span,
callable_name: function_name.to_owned(),
callable_definition_span: Some(*definition_span),
arity: arity_range,
num_args: arguments.len(),
}));
}

for (idx, ((parameter_span, parameter_type), argument_type)) in parameters
.iter()
.map(|p| p.0)
.zip(parameter_types.iter())
.zip(argument_types)
.enumerate()
{
if constraints
.add_equal_constraint(parameter_type, &argument_type)
.is_trivially_violated()
{
match (parameter_type, &argument_type) {
(Type::Dimension(parameter_dtype), Type::Dimension(argument_dtype)) => {
return Err(Box::new(TypeCheckError::IncompatibleDimensions(
IncompatibleDimensionsError {
span_operation: *span,
operation: format_compact!(
"argument {num} of function call to '{name}'",
num = idx + 1,
name = function_name
),
span_expected: parameter_span,
expected_name: "parameter type",
expected_dimensions: registry.get_derived_entry_names_for(
&parameter_dtype.to_base_representation(),
),
expected_type: parameter_dtype.to_base_representation(),
span_actual: arguments[idx].full_span(),
actual_name: " argument type",
actual_name_for_fix: "function argument",
actual_dimensions: registry.get_derived_entry_names_for(
&argument_dtype.to_base_representation(),
),
actual_type: argument_dtype.to_base_representation(),
},
)));
}
_ => {
return Err(Box::new(TypeCheckError::IncompatibleTypesInFunctionCall(
Some(parameter_span),
parameter_type.clone(),
arguments[idx].full_span(),
argument_type.clone(),
)));
}
}
}
}

Ok(typed_ast::Expression::FunctionCall(
*span,
*full_span,
function_name,
arguments,
TypeScheme::concrete(return_type.as_ref().clone()),
))
}

#[derive(Clone, Default)]
pub struct TypeChecker {
structs: HashMap<CompactString, StructInfo>,
Expand Down Expand Up @@ -84,12 +209,11 @@ impl TypeChecker {
}

fn add_equal_constraint(&mut self, lhs: &Type, rhs: &Type) -> TrivialResolution {
self.constraints
.add(Constraint::Equal(lhs.clone(), rhs.clone()))
self.constraints.add_equal_constraint(lhs, rhs)
}

fn add_dtype_constraint(&mut self, type_: &Type) -> TrivialResolution {
self.constraints.add(Constraint::IsDType(type_.clone()))
self.constraints.add_dtype_constraint(type_)
}

fn enforce_dtype(&mut self, type_: &Type, span: Span) -> Result<()> {
Expand Down Expand Up @@ -174,128 +298,6 @@ impl TypeChecker {
})?)
}

fn get_proper_function_reference<'a>(
&self,
expr: &ast::Expression<'a>,
) -> Option<(&'a str, &FunctionSignature)> {
match expr {
ast::Expression::Identifier(_, name) => self
.env
.get_function_info(name)
.map(|(signature, _)| (*name, signature)),
_ => None,
}
}

fn proper_function_call<'a>(
&mut self,
span: &Span,
full_span: &Span,
function_name: &'a str,
signature: &FunctionSignature,
arguments: Vec<typed_ast::Expression<'a>>,
argument_types: Vec<Type>,
) -> Result<typed_ast::Expression<'a>> {
let FunctionSignature {
name: _,
definition_span,
type_parameters: _,
parameters,
return_type_annotation: _,
fn_type,
} = signature;

let fn_type = match fn_type {
TypeScheme::Concrete(t) => {
// This branch is needed for recursive functions, where the type of the function
// is not yet known (and not yet quantified).
t.clone()
}
TypeScheme::Quantified(_, _) => {
let qt = fn_type.instantiate(&mut self.name_generator);

for Bound::IsDim(t) in qt.bounds.iter() {
self.add_dtype_constraint(t).ok();
}

qt.inner
}
};

let Type::Fn(parameter_types, return_type) = fn_type else {
unreachable!("Expected function type, got {:#?}", fn_type);
};

let arity_range = parameters.len()..=parameters.len();

if !arity_range.contains(&arguments.len()) {
return Err(Box::new(TypeCheckError::WrongArity {
callable_span: *span,
callable_name: function_name.to_owned(),
callable_definition_span: Some(*definition_span),
arity: arity_range,
num_args: arguments.len(),
}));
}

for (idx, ((parameter_span, parameter_type), argument_type)) in parameters
.iter()
.map(|p| p.0)
.zip(parameter_types.iter())
.zip(argument_types)
.enumerate()
{
if self
.add_equal_constraint(parameter_type, &argument_type)
.is_trivially_violated()
{
match (parameter_type, &argument_type) {
(Type::Dimension(parameter_dtype), Type::Dimension(argument_dtype)) => {
return Err(Box::new(TypeCheckError::IncompatibleDimensions(
IncompatibleDimensionsError {
span_operation: *span,
operation: format_compact!(
"argument {num} of function call to '{name}'",
num = idx + 1,
name = function_name
),
span_expected: parameter_span,
expected_name: "parameter type",
expected_dimensions: self.registry.get_derived_entry_names_for(
&parameter_dtype.to_base_representation(),
),
expected_type: parameter_dtype.to_base_representation(),
span_actual: arguments[idx].full_span(),
actual_name: " argument type",
actual_name_for_fix: "function argument",
actual_dimensions: self.registry.get_derived_entry_names_for(
&argument_dtype.to_base_representation(),
),
actual_type: argument_dtype.to_base_representation(),
},
)));
}
_ => {
return Err(Box::new(TypeCheckError::IncompatibleTypesInFunctionCall(
Some(parameter_span),
parameter_type.clone(),
arguments[idx].full_span(),
argument_type.clone(),
)));
}
}
}
}

Ok(typed_ast::Expression::FunctionCall(
*span,
*full_span,
function_name,
arguments,
TypeScheme::concrete(return_type.as_ref().clone()),
))
}

fn elaborate_expression<'a>(
&mut self,
ast: &ast::Expression<'a>,
Expand Down Expand Up @@ -778,18 +780,20 @@ impl TypeChecker {
// to a (proper) function, or it can be an arbitrary complicated expression
// that evaluates to a function "pointer".

if let Some((name, signature)) = self.get_proper_function_reference(callable) {
// TODO: there is probably a better way to get around borrowing issues here
let signature = signature.clone();

self.proper_function_call(
if let Some((function_name, signature)) =
self.env.get_proper_function_reference(callable)
{
proper_function_call(ProperFunctionCallArgs {
registry: &mut self.registry,
constraints: &mut self.constraints,
name_generator: &mut self.name_generator,
span,
full_span,
name,
&signature,
arguments_checked,
function_name,
signature,
arguments: arguments_checked,
argument_types,
)?
})?
} else {
let callable_checked = self.elaborate_expression(callable)?;
let callable_type = callable_checked.get_type();
Expand Down
Loading