-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_leraning_utils.py
925 lines (854 loc) · 35.2 KB
/
model_leraning_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
from __future__ import print_function
import numpy as np
import scipy as sp
from scipy.linalg import cholesky
import colorsys
import time
# from multidim_gp import MultidimGP
# from multidim_gp import MdGpyGP as MultidimGP
from multidim_gp import MdGpyGPwithNoiseEst as MultidimGP
from itertools import compress
from copy import deepcopy
from collections import Counter
from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVC
import copy
from sklearn import mixture
from sklearn.preprocessing import StandardScaler
import operator
import matplotlib.pyplot as plt
import matplotlib.colors as plt_colors
# from __future__ import division
from mpl_toolkits.mplot3d import Axes3D
from numpy import linalg
'''
usage:
ugp_params = {
'alpha': 1.,
'kappa': 2.,
'beta': 0.,
}
ugp = UGP(dX + dU, **ugp_params)
y_mu, y_var, _, _, xy_cor = ugp.get_posterior(gp, x_mu, x_var)
* gp should have predict method according to the scikit learn lib
'''
yumi_joint_limits = [
(-2.9234, 2.9234),
(-2.4870, 0.7417),
(-2.9234, 2.9234),
(-2.1380, 1.3788),
(-5.0440, 5.0440),
(-1.5184, 2.3911),
(-3.9793, 3.9793),
(-np.pi, np.pi),
(-np.pi, np.pi),
(-np.pi, np.pi),
(-np.pi, np.pi),
(-2*np.pi, 2*np.pi),
(-2*np.pi, 2*np.pi),
(-2*np.pi, 2*np.pi),
]
jitter_val = 1e-6
class UGP(object):
def __init__(self, L, alpha=1e-3, kappa=0., beta=2.):
'''
Initialize the unscented transform parameters
:param L: dim of the input
a practical value set for the remaining params:
:param alpha: 1.
:param kappa: 2.
:param beta: 0.
'''
self.L = L
self.N = 2*L + 1
self.alpha = alpha
self.kappa = kappa
self.beta = beta
def get_sigma_points(self, mu, var):
'''
generate and return 2L+1 sigma points along with their weights
:param mu: mean of input
:param var: variance of output
:return:
'''
L = self.L
N = self.N
assert(mu.shape == (L,))
assert (var.shape == (L, L))
alpha = self.alpha
kappa = self.kappa
beta = self.beta
sigmaMat = np.zeros((N, L))
Lambda = (alpha**2) * (L + kappa) - L
sigmaMat[0, :] = mu
n, n = var.shape
var = var + np.eye(n,n)*1e-6 # TODO: is this ok?
try:
chol = cholesky((L + Lambda)*var, lower=True)
except np.linalg.LinAlgError:
print('Cholesky failure')
assert(False)
for i in range(1, L+1):
sigmaMat[i, :] = mu + chol[:,i-1]
sigmaMat[L+i, :] = mu - chol[:, i-1]
W_mu = np.zeros(N)
Wi = 1. / (2. * (L + Lambda))
W_mu.fill(Wi)
W_mu[0] = Lambda / (L + Lambda)
W_var = np.zeros(N)
W_var.fill(Wi)
W_var[0] = W_mu[0] + (1. - alpha**2 + beta)
return sigmaMat, W_mu, W_var
def get_posterior(self, fn, mu, var, t=None):
'''
Compute and return the output distribution along with the propagated sigma points
:param fn: the nonlinear function through which to propagate
:param mu: mean of the input
:param var: variance of the output
:return:
Y_mu_post: output mean
Y_var_post: output variance
Y_mu: transformed sigma points
Y_var: gp var for each transformed points
XY_cross_cov: cross covariance between input and output
'''
sigmaMat, W_mu, W_var = self.get_sigma_points(mu, var)
if t is None:
Y_mu, Y_std = fn.predict(sigmaMat, return_std=True) # same signature as the predict function of gpr but can be
# any nonlinear function
else:
Y_mu, Y_std = fn.predict(sigmaMat, t,
return_std=True) # same signature as the predict function of gpr but can be
# any nonlinear function
N, Do = Y_mu.shape
Y_var = Y_std **2
Y_var = Y_var.reshape(N,Do)
Y_mu_post = np.average(Y_mu, axis=0, weights=W_mu) # DX1
# Y_mu_post = Y_mu[0]
Y_var_post = np.zeros((Do,Do))
for i in range(N):
y = Y_mu[i] - Y_mu_post
yy_ = np.outer(y, y)
Y_var_post += W_var[i]*yy_
# yy_ = np.square(y)
# Y_var_post += np.diag(W_var[i] * yy_)
#Y_var_post = np.diag(np.diag(Y_var_post)) # makes it worse
Y_var_post += np.diag(Y_var[0])
a = np.zeros((Do, Do))
np.fill_diagonal(a, 1e-6)
# Y_var_post += a #TODO: verify this
if Do == 1:
Y_mu_post = np.asscalar(Y_mu_post)
Y_var_post = np.asscalar(Y_var_post)
# compute cross covariance between input and output
Di = mu.shape[0]
XY_cross_cov = np.zeros((Di, Do))
#TODO: XY_cross_cov may be wrong
for i in range(N):
y = Y_mu[i] - Y_mu_post
x = sigmaMat[i] - mu
xy_ = np.outer(x, y)
XY_cross_cov += W_var[i] * xy_
return Y_mu_post, Y_var_post, Y_mu, Y_var, XY_cross_cov
def get_posterior_bnn(self, fn, mu, var):
'''
Compute and return the output distribution along with the propagated sigma points
:param fn: the nonlinear function through which to propagate
:param mu: mean of the input
:param var: variance of the output
:return:
Y_mu_post: output mean
Y_var_post: output variance
Y_mu: transformed sigma points
Y_var: gp var for each transformed points
XY_cross_cov: cross covariance between input and output
'''
sigmaMat, W_mu, W_var = self.get_sigma_points(mu, var)
Y_mu, Y_var = fn.predict(sigmaMat, factored=False) # same signature as the predict function of gpr but can be
N, Do = Y_mu.shape
Y_var = Y_var.reshape(N,Do)
Y_mu_post = np.average(Y_mu, axis=0, weights=W_mu) # DX1
# Y_mu_post = Y_mu[0]
Y_var_post = np.zeros((Do,Do))
for i in range(N):
y = Y_mu[i] - Y_mu_post
yy_ = np.outer(y, y)
Y_var_post += W_var[i]*yy_
Y_var_post += np.diag(Y_var[0])
# a = np.zeros((Do, Do))
# np.fill_diagonal(a, 1e-6)
# Y_var_post += a #TODO: verify this
if Do == 1:
Y_mu_post = np.asscalar(Y_mu_post)
Y_var_post = np.asscalar(Y_var_post)
# compute cross covariance between input and output
Di = mu.shape[0]
XY_cross_cov = np.zeros((Di, Do))
#TODO: XY_cross_cov may be wrong
for i in range(N):
y = Y_mu[i] - Y_mu_post
x = sigmaMat[i] - mu
xy_ = np.outer(x, y)
XY_cross_cov += W_var[i] * xy_
return Y_mu_post, Y_var_post, Y_mu, Y_var, XY_cross_cov
class dummySVM(object):
def __init__(self, label):
self.label = label
def predict(self, ip):
return np.full(ip.shape[0],self.label)
def get_N_HexCol(N=5):
HSV_tuples = [(x*1.0/N, 0.5, 0.5) for x in range(N)]
# hex_out = []
rgb_out = []
for rgb in HSV_tuples:
rgb = map(lambda x: int(x*255),colorsys.hsv_to_rgb(*rgb))
# hex_out.append("".join(map(lambda x: chr(x).encode('hex'),rgb)))
rgb_out.append(list(rgb))
return rgb_out
def train_trans_models(gp_param_list, XUs_t, labels_t, dX, dU):
'''
Trains the GP based transition models. To be moved out of this file
:param gp_param_list:
:param XUs_t:
:param labels_t:
:param dX:
:param dU:
:return:
'''
trans_dicts = {}
for i in range(XUs_t.shape[0]):
xu = XUs_t[i]
x_labels = labels_t[i]
iddiff = x_labels[:-1] != x_labels[1:]
trans_data = zip(xu[:-1, :dX + dU], xu[1:, :dX], x_labels[:-1], x_labels[1:])
trans_data_p = list(compress(trans_data, iddiff))
for xu_, y, xid, yid in trans_data_p:
if (xid, yid) not in trans_dicts:
trans_dicts[(xid, yid)] = {'XU': [], 'Y': [], 'mdgp': None}
trans_dicts[(xid, yid)]['XU'].append(xu_)
trans_dicts[(xid, yid)]['Y'].append(y)
for trans_data in trans_dicts:
XU = np.array(trans_dicts[trans_data]['XU']).reshape(-1, dX + dU)
Y = np.array(trans_dicts[trans_data]['Y']).reshape(-1, dX)
mdgp = MultidimGP(gp_param_list, Y.shape[1])
mdgp.fit(XU, Y)
trans_dicts[trans_data]['mdgp'] = deepcopy(mdgp)
del mdgp
return trans_dicts
class SVMmodePrediction(object):
def __init__(self, svm_grid_params, svm_params):
self.svm_grid_params = svm_grid_params
self.svm_params = svm_params
def train(self, XUs_t, labels_t, labels):
'''
Trains SVMs for each cluster. To be moved out of this file
:param svm_grid_params:
:param svm_params:
:param XU_t:
:param labels_t:
:return:
'''
start_time = time.time()
XU_t = XUs_t.reshape(-1, XUs_t.shape[-1])
self.scaler = StandardScaler().fit(XU_t)
XU_t_std = self.scaler.transform(XU_t)
self.XUs_t_std = XU_t_std.reshape(XUs_t.shape)
# joint space SVM
SVMs = {}
XUnI_svm = []
labels_t_svm = []
for i in range(self.XUs_t_std.shape[0]):
xu_t = self.XUs_t_std[i]
labels_t_ = labels_t[i]
labels_t_svm.extend(labels_t_[:-1])
xuni = zip(xu_t[:-1, :], labels_t_[1:])
XUnI_svm.extend(xuni)
labels_t_svm = np.array(labels_t_svm)
for label in labels:
xui = list(compress(XUnI_svm, (labels_t_svm == label)))
xu, i = zip(*xui)
xu = np.array(xu)
i = list(i)
cnts_list = Counter(i).items()
svm_check_ok = True
for cnts in cnts_list:
if cnts[1] < self.svm_grid_params['cv']:
svm_check_ok = False # TODO: this check is disabled.
if len(cnts_list) > 1 and svm_check_ok == True:
clf = GridSearchCV(SVC(**self.svm_params), **self.svm_grid_params)
clf.fit(xu, i)
SVMs[label] = deepcopy(clf)
del clf
else:
print ('detected dummy svm:', label)
dummy_svm = dummySVM(cnts_list[0][0])
SVMs[label] = deepcopy(dummy_svm)
del dummy_svm
print ('SVMs training time:', time.time() - start_time)
self.SVMs = SVMs
def predict(self, XU, i):
XU_std = self.scaler.transform(XU)
svm = self.SVMs[i]
next_modes = svm.predict(XU_std)
return next_modes
class SVMmodePredictionGlobal(object):
def __init__(self, svm_grid_params, svm_params):
self.svm_grid_params = svm_grid_params
self.svm_params = svm_params
def train(self, XUs_t, labels_t, labels):
'''
Trains SVMs for each cluster. To be moved out of this file
:param svm_grid_params:
:param svm_params:
:param XU_t:
:param labels_t:
:return:
'''
XU_t = XUs_t.reshape(-1, XUs_t.shape[-1])
self.scaler = StandardScaler().fit(XU_t)
XU_t_std = self.scaler.transform(XU_t)
self.XUs_t_std = XU_t_std.reshape(XUs_t.shape)
# joint space SVM
XUnI_svm = []
for i in range(self.XUs_t_std.shape[0]):
xu_t = self.XUs_t_std[i]
labels_t_ = labels_t[i]
xuni = zip(xu_t[:-1, :], labels_t_[1:])
XUnI_svm.extend(xuni)
xu, i = zip(*XUnI_svm)
xu = np.array(xu)
i = list(i)
clf = GridSearchCV(SVC(**self.svm_params), **self.svm_grid_params)
clf.fit(xu, i)
self.svm = copy.deepcopy(clf)
def predict(self, XU, i=None):
XU_std = self.scaler.transform(XU)
next_modes = self.svm.predict(XU_std)
return next_modes
class SVMmodePredictionGlobalME(SVMmodePredictionGlobal):
def train(self, XUs_t, labels_t, labels):
'''
Trains SVMs for each cluster. To be moved out of this file
:param svm_grid_params:
:param svm_params:
:param XU_t:
:param labels_t:
:return:
'''
XU_t = XUs_t.reshape(-1, XUs_t.shape[-1])
self.scaler = StandardScaler().fit(XU_t)
XU_t_std = self.scaler.transform(XU_t)
self.XUs_t_std = XU_t_std.reshape(XUs_t.shape)
# joint space SVM
XUnI_svm = []
for i in range(self.XUs_t_std.shape[0]):
xu_t = self.XUs_t_std[i]
labels_t_ = labels_t[i]
xuni = zip(xu_t, labels_t_)
XUnI_svm.extend(xuni)
xu, i = zip(*XUnI_svm)
xu = np.array(xu)
i = list(i)
clf = GridSearchCV(SVC(**self.svm_params), **self.svm_grid_params)
clf.fit(xu, i)
self.svm = copy.deepcopy(clf)
def print_global_gp(global_gp, file):
print('Global GP params', file=file)
gps = global_gp.gp_list
for i in range(len(gps)):
gp = gps[i]
print('Output dim', i, file=file)
print(gp.rbf.variance, file=file)
print(gp.rbf.lengthscale, file=file)
print(gp.Gaussian_noise.variance, file=file)
def print_experts_gp(experts_gp, file):
print('Experts GP params', file=file)
for e in experts_gp:
print('Expert', e, file=file)
gps = experts_gp[e].gp_list
for i in range(len(gps)):
print('Output dim', i, file=file)
gp = gps[i]
print(gp.rbf.variance, file=file)
print(gp.rbf.lengthscale, file=file)
print(gp.Gaussian_noise.variance, file=file)
def print_transition_gp(transition_gp, file):
print('Trans GP params', file=file)
for t in transition_gp:
print('Trans gp', t, file=file)
gps = transition_gp[t]['mdgp'].gp_list
for i in range(len(gps)):
print('Output dim', i, file=file)
gp = gps[i]
print(gp.rbf.variance, file=file)
print(gp.rbf.lengthscale, file=file)
print(gp.Gaussian_noise.variance, file=file)
def obtian_joint_space_policy(params, xus, x_init):
kp = params['kp']
kd = params['kd']
dX = params['dX']
dP = params['dP']
dV = params['dV']
dU = params['dU']
dt = params['dt']
assert(dX==(dP+dV))
N, T, _ = xus.shape
xrs = np.zeros((N, T, dX))
q_init = x_init[:dP]
for n in range(N):
xu = xus[n]
u = xu[:,dX:dX+dU]
x = xu[:, :dX]
q = x[:, :dP]
qd = x[:, dP:dP+dV]
qr_t_ = q_init
qr = np.zeros((T,dP))
qrd = np.zeros((T,dV))
for t in range(T):
qrd[t] = (u[t] - kp*(qr_t_ - q[t]) + kd*qd[t])/(kp*dt + kd)
qr[t] = qr_t_ + qrd[t]*dt
qr_t_ = qr[t]
xrs[n] = np.concatenate((qr, qrd), axis=1)
return xrs
class DPGMMCluster(object):
def __init__(self, params, params_extra, X):
self.dpgmm = mixture.BayesianGaussianMixture(**params)
self.params = params
self.params_extra = params_extra
if params_extra['standardize'] == True:
self.scaler = StandardScaler().fit(X)
self.X_std = self.scaler.transform(X)
else:
self.X_std = X
def cluster(self):
self.dpgmm.fit(self.X_std)
print('Converged DPGMM', self.dpgmm.converged_, 'on', self.dpgmm.n_iter_,
'iterations with lower bound', self.dpgmm.lower_bound_)
y = self.dpgmm.predict(self.X_std)
labels, counts = zip(*sorted(Counter(y).items(), key=operator.itemgetter(0)))
min_clust_size = self.params_extra['min_clust_size']
vbgmm_refine = self.params_extra['vbgmm_refine']
if vbgmm_refine:
selected_k_idx = list(np.where(np.array(counts) > min_clust_size)[0])
K = len(selected_k_idx)
vbgmm_params = self.params
vbgmm_params['weight_concentration_prior_type'] = 'dirichlet_distribution'
self.vbgmm = mixture.BayesianGaussianMixture(**vbgmm_params)
dpgmm_params = self.dpgmm._get_parameters()
self.vbgmm.converged_ = False
self.vbgmm.lower_bound_ = -np.infty
_, log_resp = self.dpgmm._e_step(self.X_std)
nk, xk, sk = mixture.gaussian_mixture._estimate_gaussian_parameters(self.X_std, np.exp(log_resp),
self.dpgmm.reg_covar,
self.dpgmm.covariance_type)
vbgmm_params = ((self.dpgmm.weight_concentration_prior_ + nk)[selected_k_idx], # weight_concentration_
dpgmm_params[1][selected_k_idx], # mean_precision_
dpgmm_params[2][selected_k_idx], # means_
dpgmm_params[3][selected_k_idx], # degrees_of_freedom_
dpgmm_params[4][selected_k_idx], # covariances_
dpgmm_params[5][selected_k_idx]) # precisions_cholesky_
self.vbgmm._set_parameters(vbgmm_params)
self.vbgmm.covariances_ /= (self.vbgmm.degrees_of_freedom_[:, np.newaxis, np.newaxis])
start_time = time.time()
self.vbgmm.fit(self.X_std)
print('Converged VBGMM', self.vbgmm.converged_, 'on', self.vbgmm.n_iter_, 'iterations with lower bound', self.vbgmm.lower_bound_)
y = self.vbgmm.predict(self.X_std)
labels, counts = zip(*sorted(Counter(y).items(), key=operator.itemgetter(0)))
if self.params_extra['min_size_filter']:
if vbgmm_refine:
log_prob = self.vbgmm._estimate_weighted_log_prob(self.X_std)
else:
log_prob = self.dpgmm._estimate_weighted_log_prob(self.X_std)
clust_discard = list(compress(zip(labels, counts), np.array(counts)<min_clust_size))
label_discard, count_discard = zip(*clust_discard)
for (label, count) in clust_discard:
array_idx_label = (y == label)
log_prob_label = log_prob[array_idx_label]
reassigned_labels = np.zeros(log_prob_label.shape[0], dtype=int)
for j in range(log_prob_label.shape[0]):
sorted_idx = np.argsort(log_prob_label[j, :])
for k in range(-2, -(len(sorted_idx)+1), -1):
if int(sorted_idx[k]) not in label_discard:
reassigned_labels[j] = int(sorted_idx[k])
break
y[array_idx_label] = reassigned_labels
y = np.array(y)
n_train = self.params_extra['n_train']
ys = y.reshape(n_train, -1)
T = ys.shape[1]
if self.params_extra['seg_filter']:
for n in range(n_train):
for t in range(T):
if t == 0:
l = ys[n:n + 1, t:t + 1]
l_n = ys[n:n + 1, t + 1:t + 2]
l_nn = ys[n:n + 1, t + 2:t + 3]
if l != l_n:
ys[n:n + 1, t:t + 1] = l_n
if l == l_n and l_n != l_nn:
ys[n:n + 1, t:t + 1] = l_nn
ys[n:n + 1, t+1:t + 2] = l_nn
elif t == T - 1:
l = ys[n:n + 1, t:t + 1]
l_p = ys[n:n + 1, t - 1:t]
if l != l_p:
ys[n:n + 1, t:t + 1] = l_p
else:
l = ys[n:n + 1, t:t + 1]
l_n = ys[n:n + 1, t + 1:t + 2]
l_nn = ys[n:n + 1, t + 2:t + 3]
l_p = ys[n:n + 1, t - 1:t]
if l != l_n and l_p != l and l_p == l_n:
ys[n:n + 1, t:t + 1] = l_n
if l == l_n and l_p != l and l_n != l_nn and l_p == l_nn:
ys[n:n + 1, t:t + 1] = l_nn
ys[n:n + 1, t+1:t + 2] = l_nn
for n in range(n_train):
for t in range(T):
if t == 0:
l = ys[n:n + 1, t:t + 1]
l_n = ys[n:n + 1, t + 1:t + 2]
l_nn = ys[n:n + 1, t + 2:t + 3]
if l != l_n:
ys[n:n + 1, t:t + 1] = l_n
ys[n:n + 1, t + 1:t + 2] = l_nn
elif t == T - 1:
l = ys[n:n + 1, t:t + 1]
l_p = ys[n:n + 1, t - 1:t]
if l != l_p:
ys[n:n + 1, t:t + 1] = l_p
else:
l = ys[n:n + 1, t:t + 1]
l_n = ys[n:n + 1, t + 1:t + 2]
l_p = ys[n:n + 1, t - 1:t]
if l != l_n and l_p != l:
ys[n:n + 1, t:t + 1] = l_n
y = y.reshape(-1)
# for i in range(len(counts)):
# if counts[i] < min_clust_size:
# array_idx_label = (y == labels[i])
# log_prob_label = log_prob[array_idx_label]
# reassigned_labels = np.zeros(log_prob_label.shape[0])
# for j in range(log_prob_label.shape[0]):
# sorted_idx = np.argsort(log_prob_label[j, :])
# reassigned_labels[j] = int(sorted_idx[-2])
# y[array_idx_label] = reassigned_labels
labels, counts = zip(*sorted(Counter(y).items(), key=operator.itemgetter(0)))
return y, labels, counts
def predict(self, X):
if hasattr(self, 'scaler'):
X_std = self.scaler.transform(X)
else:
X_std = X
if hasattr(self, 'vbgmm'):
return self.vbgmm.predict(X_std)
else:
return self.dpgmm.predict(X_std)
def get_ee_points(offsets, ee_pos, ee_rot):
"""
Helper method for computing the end effector points given a
position, rotation matrix, and offsets for each of the ee points.
Args:
offsets: N x 3 array where N is the number of points.
ee_pos: 1 x 3 array of the end effector position.
ee_rot: 3 x 3 rotation matrix of the end effector.
Returns:
3 x N array of end effector points.
"""
rotated = ee_rot.dot(offsets.T)
translated = rotated + ee_pos.T
return translated
# return ee_rot.dot(offsets.T) + ee_pos.T
def logsum(vec, axis=0, keepdims=True):
#TODO: Add a docstring.
maxv = np.max(vec, axis=axis, keepdims=keepdims)
maxv[maxv == -float('inf')] = 0
return np.log(np.sum(np.exp(vec-maxv), axis=axis, keepdims=keepdims)) + maxv
class traj_with_moe(object):
def __init__(self, sim_data_tree, experts, trans_dicts, massSlideWorld, dlt_mdl=False):
self.sim_data_tree = sim_data_tree
self.experts = experts
self.trans_dicts = trans_dicts
self.massSlideWorld = massSlideWorld
self.dlt_mdl = dlt_mdl
def sample(self, num_samples, H):
sim_data_tree = self.sim_data_tree
experts = self.experts
trans_dicts = self.trans_dicts
massSlideWorld = self.massSlideWorld
dX = sim_data_tree[0][0][2].shape[0]
sample_trajs = np.zeros((num_samples, H, dX))
for s in range(num_samples):
tracks_0 = sim_data_tree[0]
assert (len(tracks_0) == 1)
curr_track = tracks_0[0]
mu = curr_track[2]
var = curr_track[3]
sample_trajs[s][0] = np.random.multivariate_normal(mu, var)
for t in range(1, H):
tracks = sim_data_tree[t]
curr_mode = curr_track[0]
l = len(tracks)
w_list = []
id_list = []
for i in range(l):
track = tracks[i]
if (track[1]==curr_mode or track[0]==curr_mode):
w_list.append(track[6])
id_list.append(i)
w_sum = np.sum(w_list)
w_list = list(np.array(w_list)/w_sum)
id_sel = np.random.choice(id_list, p=w_list)
next_track = tracks[id_sel]
x = sample_trajs[s][t-1]
x = x.reshape(-1)
um, uv = massSlideWorld.predict(x.reshape(1,-1))
um = np.asscalar(um)
uv = np.asscalar(uv)
u = np.random.normal(um, uv)
xu = np.append(x, u)
if next_track[1] == curr_track[0]:
gp = trans_dicts[(curr_track[0], next_track[0])]['mdgp']
mu, std = gp.predict(xu.reshape(1, -1))
mu = mu.reshape(-1)
std = std.reshape(-1) ** 2
var = np.diag(std)
sample_trajs[s][t] = np.random.multivariate_normal(mu, var)
elif next_track[0] == curr_track[0]:
gp = experts[next_track[0]]
mu, std = gp.predict(xu.reshape(1, -1))
mu = mu.reshape(-1)
std = std.reshape(-1) ** 2
var = np.diag(std)
if not self.dlt_mdl:
sample_trajs[s][t] = np.random.multivariate_normal(mu, var)
else:
sample_trajs[s][t] = np.random.multivariate_normal(mu, var) + sample_trajs[s][t - 1]
curr_track = next_track
self.sample_trajs = sample_trajs
return sample_trajs
def plot_samples(self):
H = self.sample_trajs.shape[1]
sample_trajs = self.sample_trajs
tm = range(H)
plt.figure()
plt.subplot(121)
plt.title('Position')
plt.plot(tm, sample_trajs[:, :, 0].T, color='g', alpha=0.1, linewidth=1)
# for sample_traj in sample_trajs:
# plt.scatter(tm, sample_traj[:, 0], color='g', alpha=0.01)
plt.subplot(122)
plt.title('Velocity')
plt.plot(tm, sample_trajs[:, :, 1].T, color='b', alpha=0.1, linewidth=1)
# for sample_traj in sample_trajs:
# plt.scatter(tm, sample_traj[:, 1], color='b', alpha=0.01)
plt.show(block=False)
def plot_gmm_traj(self, Xs_t_test):
K = self.params['n_components']
dX = self.sample_trajs.shape[2]
n_test, H, _ = Xs_t_test.shape
traj_density = self.traj_density
traj_means = np.zeros((H, K, dX + 1))
traj_stds = np.zeros((H, K, dX + 1))
for t in range(H):
for k in range(K):
traj_means[t, k, :dX] = traj_density[t][1][k]
traj_means[t, k, dX:] = traj_density[t][0][k]
traj_stds[t, k, :dX] = np.sqrt(np.diag(traj_density[t][2][k]))
traj_stds[t, k, dX:] = traj_density[t][0][k]
tm = range(H)
plt.figure()
plt.subplot(121)
plt.title('Position')
plt.subplot(122)
plt.title('Velocity')
for k in range(K):
if k == 0:
cl = 'g'
elif k == 1:
cl = 'b'
plt.subplot(121)
prob = traj_means[:, k, 2]
rbg_g = plt_colors.to_rgba(cl)
rbg_col = np.tile(rbg_g, (H, 1))
rbg_col[:, 3] = prob.reshape(-1)
plt.scatter(tm, traj_means[:, k, 0], color=rbg_col)
plt.scatter(tm, traj_means[:, k, 0] + 1.96 * traj_stds[:, k, 0], color=rbg_col, marker='_')
plt.scatter(tm, traj_means[:, k, 0] - 1.96 * traj_stds[:, k, 0], color=rbg_col, marker='_')
plt.plot(tm, traj_means[:, k, 0], color='k', alpha=0.3)
plt.subplot(122)
plt.title('Velocity')
rbg_g = plt_colors.to_rgba(cl)
rbg_col = np.tile(rbg_g, (H, 1))
rbg_col[:, 3] = prob.reshape(-1)
plt.scatter(tm, traj_means[:, k, 1], color=rbg_col)
plt.scatter(tm, traj_means[:, k, 1] + 1.96 * traj_stds[:, k, 1], color=rbg_col, marker='_')
plt.scatter(tm, traj_means[:, k, 1] - 1.96 * traj_stds[:, k, 1], color=rbg_col, marker='_')
plt.plot(tm, traj_means[:, k, 1], color='k', alpha=0.3)
plt.subplot(121)
for i in range(0, n_test):
plt.plot(tm, Xs_t_test[i, :H, 0], ls='--', color='k', alpha=0.2)
plt.subplot(122)
for i in range(1, n_test):
plt.plot(tm, Xs_t_test[i, :H, 1], ls='--', color='k', alpha=0.2)
plt.show(block=False)
def get_score(self, Xs_t_test):
n_test, H, dX = Xs_t_test.shape
K = self.params['n_components']
traj_density = self.traj_density
X_test_log_ll = np.zeros((H, n_test))
X_test_rmse = np.zeros((H, n_test))
for t in range(H):
for i in range(n_test):
X_test = Xs_t_test[i]
x_t = X_test[t].reshape(-1)
log_prob_mix = np.zeros(K)
for k in range(K):
x_mu_t = traj_density[t][1][k]
x_var_t = traj_density[t][2][k]
# x_var_t = x_var_t + np.eye(dX) * jitter_val
x_var_t = np.diag(np.diag(x_var_t))
pi = traj_density[t][0][k]
log_prob_mix[k] = sp.stats.multivariate_normal.logpdf(x_t, x_mu_t, x_var_t) + np.log(pi)
X_test_log_ll[t, i] = logsum(log_prob_mix)
label = self.dpgmm.predict(x_t.reshape(1, -1))
x_mu_l = self.dpgmm.means_[label].reshape(-1)
X_test_rmse[t, i] = np.dot((x_mu_l - x_t), (x_mu_l - x_t).T)
nll_mean = np.mean(X_test_log_ll.reshape(-1))
nll_std = np.std(X_test_log_ll.reshape(-1))
rmse = np.sqrt(np.mean(X_test_rmse.reshape(-1)))
return nll_mean, nll_std, rmse, X_test_log_ll
def estimate_gmm_traj_density(self, params, Xs_t_test, plot=True):
self.params = params
sample_trajs = self.sample_trajs
traj_density = []
H = sample_trajs.shape[1]
dX = sample_trajs.shape[2]
n_test, H, _ = Xs_t_test.shape
self.dpgmm = mixture.BayesianGaussianMixture(**params)
self.dpgmm.fit(sample_trajs[:, 0, :])
traj_density.append([self.dpgmm.weights_, self.dpgmm.means_, self.dpgmm.covariances_])
for t in range(1, H):
self.dpgmm = mixture.BayesianGaussianMixture(**params)
self.dpgmm.fit(sample_trajs[:,t,:])
if np.linalg.norm(self.dpgmm.means_[0] - traj_density[t-1][1][0]) > np.linalg.norm(self.dpgmm.means_[0] - traj_density[t - 1][1][1]):
traj_density.append([np.flip(self.dpgmm.weights_, axis=0), np.flip(self.dpgmm.means_, axis=0), np.flip(self.dpgmm.covariances_, axis=0)])
else:
traj_density.append([self.dpgmm.weights_, self.dpgmm.means_, self.dpgmm.covariances_])
self.traj_density = traj_density
if plot:
self.plot_gmm_traj(Xs_t_test)
return self.get_score(Xs_t_test)
class traj_with_globalgp(traj_with_moe):
def __init__(self, x_mu_0, x_var_0, gp, massSlideWorld, dlt_mdl=False):
self.x_mu_0 = x_mu_0
self.x_var_0 = x_var_0
self.gp = gp
self.massSlideWorld = massSlideWorld
self.dlt_mdl = dlt_mdl
def sample(self, num_samples, H):
dX = self.x_mu_0.shape[0]
sample_trajs = np.zeros((num_samples, H, dX))
for s in range(num_samples):
mu = self.x_mu_0
var = self.x_var_0
sample_trajs[s][0] = np.random.multivariate_normal(mu, var)
for t in range(1, H):
x = sample_trajs[s][t-1]
x = x.reshape(-1)
um, uv = self.massSlideWorld.predict(x.reshape(1,-1), t)
# um = np.asscalar(um)
# uv = np.asscalar(uv)
um = um.reshape(-1)
uv = uv.reshape(-1)
u = np.random.normal(um, uv)
xu = np.append(x, u)
mu, std = self.gp.predict(xu.reshape(1,-1))
mu = mu.reshape(-1)
std = std.reshape(-1)**2
var = np.diag(std)
if not self.dlt_mdl:
sample_trajs[s][t] = np.random.multivariate_normal(mu, var)
else:
sample_trajs[s][t] = np.random.multivariate_normal(mu, var) + sample_trajs[s][t-1]
self.sample_trajs = sample_trajs
return sample_trajs
class SimplePolicy(object):
def __init__(self, Xrs, Us, params):
self.Xr = np.mean(Xrs, axis=0)
self.U_var = np.var(Us, axis=0)
self.kp = params['Kp']
self.kd = params['Kd']
self.dP = params['dP']
self.dU = params['dU']
def act(self, x, t):
ex = (self.Xr[t] - x)
eq = ex[:self.dP]
eqd = ex[self.dP:]
u = np.diag(self.kp).dot(eq) + np.diag(self.kd).dot(eqd)
un = np.random.normal(u, np.sqrt(self.U_var[t]))
return un, u
def predict(self, X, t, return_std=True):
U = np.zeros((X.shape[0], self.dU))
U_noise = np.zeros((X.shape[0], self.dU))
for i in range(X.shape[0]):
_, U[i] = self.act(X[i], t)
# U_noise[i] = np.maximum(np.sqrt(self.U_var[t]), np.full(7, 1e-1))
U_noise[i] = np.sqrt(self.U_var[t])
if return_std:
return U, U_noise
else:
return U
def plotEllipsoid(center, radii, rotation, ax=None, plotAxes=False, col='b', alpha=0.2):
"""Plot an ellipsoid"""
make_ax = ax == None
if make_ax:
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
u = np.linspace(0.0, 2.0 * np.pi, 20)
v = np.linspace(0.0, np.pi, 20)
# cartesian coordinates that correspond to the spherical angles:
x = radii[0] * np.outer(np.cos(u), np.sin(v))
y = radii[1] * np.outer(np.sin(u), np.sin(v))
z = radii[2] * np.outer(np.ones_like(u), np.cos(v))
# rotate accordingly
for i in range(len(x)):
for j in range(len(x)):
[x[i, j], y[i, j], z[i, j]] = np.dot([x[i, j], y[i, j], z[i, j]], rotation) + center
if plotAxes:
# make some purdy axes
axes = np.array([[radii[0], 0.0, 0.0],
[0.0, radii[1], 0.0],
[0.0, 0.0, radii[2]]])
# rotate accordingly
for i in range(len(axes)):
axes[i] = np.dot(axes[i], rotation)
# plot axes
for p in axes:
X3 = np.linspace(-p[0], p[0], 100) + center[0]
Y3 = np.linspace(-p[1], p[1], 100) + center[1]
Z3 = np.linspace(-p[2], p[2], 100) + center[2]
ax.plot(X3, Y3, Z3, color=col)
# plot ellipsoid
# ax.plot_wireframe(x, y, z, rstride=4, cstride=4, color=col, alpha=alpha)
ax.plot_surface(x, y, z, rstride=4, cstride=4, color=col, alpha=alpha)
if make_ax:
plt.show()
plt.close(fig)
del fig
def plotEllipsiodError(mu_sq, cov_sq, col, ax=None, alpha=0.2):
'''
:param mu_sq: NX3 center points
:param cov_sq: NX3X3 covariances for each point
:param col:
:param alpha:
:return:
'''
assert(mu_sq.shape[0]==cov_sq.shape[0]==col.shape[0])
assert(ax is not None)
for i in range(mu_sq.shape[0]):
cov = cov_sq[i]
mu = mu_sq[i]
L, U = np.linalg.eigh(cov)
radii = 1.96 * np.sqrt(L)
plotEllipsoid(mu, radii, U, ax=ax, plotAxes=False, col=col[i], alpha=alpha)