Skip to content

Commit

Permalink
update examples
Browse files Browse the repository at this point in the history
  • Loading branch information
浅梦 committed May 5, 2020
1 parent 6d82098 commit cc8c1a9
Show file tree
Hide file tree
Showing 3 changed files with 18 additions and 14 deletions.
10 changes: 5 additions & 5 deletions docs/source/Examples.md
Original file line number Diff line number Diff line change
Expand Up @@ -78,10 +78,10 @@ if __name__ == "__main__":

K.set_learning_phase(True)

model = YoutubeDNN(user_feature_columns, item_feature_columns, num_sampled=5, user_dnn_hidden_units=(64, 16))
# model = MIND(user_feature_columns,item_feature_columns,dynamic_k=True,p=1,k_max=2,num_sampled=5,user_dnn_hidden_units=(64,16),init_std=0.001)
model = YoutubeDNN(user_feature_columns, item_feature_columns, num_sampled=5, user_dnn_hidden_units=(64, embedding_dim))
# model = MIND(user_feature_columns,item_feature_columns,dynamic_k=False,p=1,k_max=2,num_sampled=5,user_dnn_hidden_units=(64,embedding_dim),init_std=0.001)

model.compile(optimizer="adagrad", loss=sampledsoftmaxloss) # "binary_crossentropy")
model.compile(optimizer="adam", loss=sampledsoftmaxloss) # "binary_crossentropy")

history = model.fit(train_model_input, train_label, # train_label,
batch_size=256, epochs=1, verbose=1, validation_split=0.0, )
Expand All @@ -94,7 +94,7 @@ if __name__ == "__main__":
item_embedding_model = Model(inputs=model.item_input, outputs=model.item_embedding)

user_embs = user_embedding_model.predict(test_user_model_input, batch_size=2 ** 12)
# user_embs = user_embs[:, i, :] i in [0,k_max) if MIND
# user_embs = user_embs[:, i, :] # i in [0,k_max) if MIND
item_embs = item_embedding_model.predict(all_item_model_input, batch_size=2 ** 12)

print(user_embs.shape)
Expand All @@ -113,7 +113,7 @@ if __name__ == "__main__":
# # faiss.normalize_L2(item_embs)
# index.add(item_embs)
# # faiss.normalize_L2(user_embs)
# D, I = index.search(user_embs, 50)
# D, I = index.search(np.ascontiguousarray(user_embs), 50)
# s = []
# hit = 0
# for i, uid in tqdm(enumerate(test_user_model_input['user_id'])):
Expand Down
14 changes: 9 additions & 5 deletions examples/colab_MovieLen1M_YoutubeDNN.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -381,13 +381,17 @@
"\n",
"K.set_learning_phase(True)\n",
"\n",
"model = YoutubeDNN(user_feature_columns, item_feature_columns, num_sampled=200, user_dnn_hidden_units=(128,64, embedding_dim))\n",
"# model = MIND(user_feature_columns,item_feature_columns,dynamic_k=True,p=1,k_max=2,num_sampled=5,user_dnn_hidden_units=(64,16),init_std=0.001)\n",
"import tensorflow as tf\n",
"if tf.__version__ >= '2.0.0':\n",
" tf.compat.v1.disable_eager_execution()\n",
"\n",
"model = YoutubeDNN(user_feature_columns, item_feature_columns, num_sampled=100, user_dnn_hidden_units=(128,64, embedding_dim))\n",
"# model = MIND(user_feature_columns,item_feature_columns,dynamic_k=False,p=1,k_max=2,num_sampled=100,user_dnn_hidden_units=(128,64, embedding_dim),init_std=0.001)\n",
"\n",
"model.compile(optimizer=\"adam\", loss=sampledsoftmaxloss) # \"binary_crossentropy\")\n",
"\n",
"history = model.fit(train_model_input, train_label, # train_label,\n",
" batch_size=512, epochs=24, verbose=1, validation_split=0.0, )\n",
" batch_size=512, epochs=20, verbose=1, validation_split=0.0, )\n",
"\n",
"# 4. Generate user features for testing and full item features for retrieval\n",
"test_user_model_input = test_model_input\n",
Expand All @@ -397,7 +401,7 @@
"item_embedding_model = Model(inputs=model.item_input, outputs=model.item_embedding)\n",
"\n",
"user_embs = user_embedding_model.predict(test_user_model_input, batch_size=2 ** 12)\n",
"# user_embs = user_embs[:, i, :] i in [0,k_max) if MIND\n",
"# user_embs = user_embs[:, i, :] # i in [0,k_max) if MIND\n",
"item_embs = item_embedding_model.predict(all_item_model_input, batch_size=2 ** 12)\n",
"\n",
"print(user_embs.shape)\n",
Expand Down Expand Up @@ -500,7 +504,7 @@
"# faiss.normalize_L2(item_embs)\n",
"index.add(item_embs)\n",
"# faiss.normalize_L2(user_embs)\n",
"D, I = index.search(user_embs, 50)\n",
"D, I = index.search(np.ascontiguousarray(user_embs), 50)\n",
"s = []\n",
"hit = 0\n",
"for i, uid in tqdm(enumerate(test_user_model_input['user_id'])):\n",
Expand Down
8 changes: 4 additions & 4 deletions examples/run_youtubednn_sampledsoftmax.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,8 +60,8 @@
if tf.__version__ >= '2.0.0':
tf.compat.v1.disable_eager_execution()

model = YoutubeDNN(user_feature_columns, item_feature_columns, num_sampled=5, user_dnn_hidden_units=(64, 16))
# model = MIND(user_feature_columns,item_feature_columns,dynamic_k=True,p=1,k_max=2,num_sampled=5,user_dnn_hidden_units=(64,16),init_std=0.001)
model = YoutubeDNN(user_feature_columns, item_feature_columns, num_sampled=5, user_dnn_hidden_units=(64, embedding_dim))
# model = MIND(user_feature_columns,item_feature_columns,dynamic_k=False,p=1,k_max=2,num_sampled=5,user_dnn_hidden_units=(64, embedding_dim),init_std=0.001)

model.compile(optimizer="adam", loss=sampledsoftmaxloss) # "binary_crossentropy")

Expand All @@ -76,7 +76,7 @@
item_embedding_model = Model(inputs=model.item_input, outputs=model.item_embedding)

user_embs = user_embedding_model.predict(test_user_model_input, batch_size=2 ** 12)
# user_embs = user_embs[:, i, :] i in [0,k_max) if MIND
# user_embs = user_embs[:, i, :] # i in [0,k_max) if MIND
item_embs = item_embedding_model.predict(all_item_model_input, batch_size=2 ** 12)

print(user_embs.shape)
Expand All @@ -95,7 +95,7 @@
# # faiss.normalize_L2(item_embs)
# index.add(item_embs)
# # faiss.normalize_L2(user_embs)
# D, I = index.search(user_embs, 50)
# D, I = index.search(np.ascontiguousarray(user_embs), 50)
# s = []
# hit = 0
# for i, uid in tqdm(enumerate(test_user_model_input['user_id'])):
Expand Down

0 comments on commit cc8c1a9

Please sign in to comment.