Skip to content

similarity: Text similarity calculation Toolkit for Java. 文本相似度计算工具包,java编写,可用于文本相似度计算、情感分析等任务,开箱即用。

License

Notifications You must be signed in to change notification settings

shibing624/similarity

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

jitpack Stars License Apache 2.0 GitHub issues Wechat Group

Similarity

similarity, compute similarity score between text strings, Java written.

similarity,相似度计算工具包,可用于文本相似度计算、情感倾向分析等,Java编写。

similarity是由一系列算法组成的Java版相似度计算工具包,目标是传播自然语言处理中相似度计算方法。similarity具备工具实用、性能高效、架构清晰、语料时新、可自定义的特点。

Feature

similarity提供下列功能:

  • 词语相似度计算

    • 词林编码法相似度[推荐]
    • 汉语语义法相似度
    • 知网词语相似度
    • 字面编辑距离法
  • 短语相似度计算

    • 简单短语相似度[推荐]
  • 句子相似度计算

    • 词性和词序结合法[推荐]
    • 编辑距离算法
    • Gregor编辑距离法
    • 优化编辑距离法
  • 段落相似度计算

    • 余弦相似度[推荐]
    • 编辑距离
    • 欧几里得距离
    • Jaccard相似性系数
    • Jaro距离
    • Jaro–Winkler距离
    • 曼哈顿距离
    • SimHash + 汉明距离
    • Sørensen–Dice系数
  • 知网义原

    • 词语义原树
  • 情感分析

    • 正面倾向程度
    • 负面倾向程度
    • 情感倾向性
  • 近似词

    • word2vec

在提供丰富功能的同时,similarity内部模块坚持低耦合、模型坚持惰性加载、词典坚持明文发布,使用方便,帮助用户训练自己的语料。

Usage

引入Jar包

Maven

<repositories>
  <repository>
    <id>jitpack.io</id>
    <url>https://jitpack.io</url>
  </repository>
</repositories>
<dependency>
  <groupId>com.github.shibing624</groupId>
  <artifactId>similarity</artifactId>
  <version>1.1.6</version>
</dependency>

Gradle

gradle的引入:jitpack

使用示例

import org.xm.Similarity;
import org.xm.tendency.word.HownetWordTendency;

public class demo {
    public static void main(String[] args) {
        double result = Similarity.cilinSimilarity("电动车", "自行车");
        System.out.println(result);

        String word = "混蛋";
        HownetWordTendency hownetWordTendency = new HownetWordTendency();
        result = hownetWordTendency.getTendency(word);
        System.out.println(word + "  词语情感趋势值:" + result);
    }
}

功能演示

1. 词语相似度计算

文本长度:词语粒度

推荐使用词林相似度:org.xm.Similarity.cilinSimilarity,是基于同义词词林的相似度计算方法

example: src/test/java/org.xm/WordSimilarityDemo.java

package org.xm;

public class WordSimilarityDemo {

    public static void main(String[] args) {
        String word1 = "教师";
        String word2 = "教授";
        double cilinSimilarityResult = Similarity.cilinSimilarity(word1, word2);
        double pinyinSimilarityResult = Similarity.pinyinSimilarity(word1, word2);
        double conceptSimilarityResult = Similarity.conceptSimilarity(word1, word2);
        double charBasedSimilarityResult = Similarity.charBasedSimilarity(word1, word2);

        System.out.println(word1 + " vs " + word2 + " 词林相似度值:" + cilinSimilarityResult);
        System.out.println(word1 + " vs " + word2 + " 拼音相似度值:" + pinyinSimilarityResult);
        System.out.println(word1 + " vs " + word2 + " 概念相似度值:" + conceptSimilarityResult);
        System.out.println(word1 + " vs " + word2 + " 字面相似度值:" + charBasedSimilarityResult);
    }
}
  • result:

word_sim result

2. 短语相似度计算

文本长度:短语粒度

推荐使用短语相似度:org.xm.Similarity.phraseSimilarity,本质是通过两个短语具有的相同字符,和相同字符的位置计算其相似度的方法

example: src/test/java/org.xm/PhraseSimilarityDemo.java

public static void main(String[] args) {
    String phrase1 = "继续努力";
    String phrase2 = "持续发展";
    double result = Similarity.phraseSimilarity(phrase1, phrase2);

    System.out.println(phrase1 + " vs " + phrase2 + " 短语相似度值:" + result);
}
  • result:

phrase sim result

3. 句子相似度计算

文本长度:句子粒度

推荐使用词形词序句子相似度:org.xm.similarity.morphoSimilarity,一种既考虑两个句子相同文本字面,也考虑相同文本出现的前后顺序的相似度方法

example: src/test/java/org.xm/SentenceSimilarityDemo.java

public static void main(String[] args) {
    String sentence1 = "中国人爱吃鱼";
    String sentence2 = "湖北佬最喜吃鱼";

    double morphoSimilarityResult = Similarity.morphoSimilarity(sentence1, sentence2);
    double editDistanceResult = Similarity.editDistanceSimilarity(sentence1, sentence2);
    double standEditDistanceResult = Similarity.standardEditDistanceSimilarity(sentence1,sentence2);
    double gregeorEditDistanceResult = Similarity.gregorEditDistanceSimilarity(sentence1,sentence2);

    System.out.println(sentence1 + " vs " + sentence2 + " 词形词序句子相似度值:" + morphoSimilarityResult);
    System.out.println(sentence1 + " vs " + sentence2 + " 优化的编辑距离句子相似度值:" + editDistanceResult);
    System.out.println(sentence1 + " vs " + sentence2 + " 标准编辑距离句子相似度值:" + standEditDistanceResult);
    System.out.println(sentence1 + " vs " + sentence2 + " gregeor编辑距离句子相似度值:" + gregeorEditDistanceResult);
}
  • result:

sentence sim result

4. 段落文本相似度计算

文本长度:段落粒度(一段话,25字符 < length(text) < 500字符)

推荐使用词形词序句子相似度:org.xm.similarity.text.CosineSimilarity,一种考虑两个段落中相同的文本,经过切词,词频和词性权重加权,并用余弦计算相似度的方法

example: src/test/java/org.xm/similarity/text/CosineSimilarityTest.java

@Test
public void getSimilarityScore() throws Exception {
        String text1 = "对于俄罗斯来说,最大的战果莫过于夺取乌克兰首都基辅,也就是现任总统泽连斯基和他政府的所在地。目前夺取基辅的战斗已经打响。";
        String text2 = "迄今为止,俄罗斯的入侵似乎没有完全按计划成功执行——英国国防部情报部门表示,在乌克兰军队激烈抵抗下,俄罗斯军队已经损失数以百计的士兵。尽管如此,俄军在继续推进。";
        TextSimilarity cosSimilarity = new CosineSimilarity();
        double score1 = cosSimilarity.getSimilarity(text1, text2);
        System.out.println("cos相似度分值:" + score1);

        TextSimilarity editSimilarity = new EditDistanceSimilarity();
        double score2 = editSimilarity.getSimilarity(text1, text2);
        System.out.println("edit相似度分值:" + score2);
        }
  • result:
cos相似度分值:0.399143
edit相似度分值:0.0875

5. 基于义原树的情感分析

example: src/test/java/org/xm/tendency/word/HownetWordTendencyTest.java

@Test
public void getTendency() throws Exception {
    HownetWordTendency hownet = new HownetWordTendency();
    String word = "美好";
    double sim = hownet.getTendency(word);
    System.out.println(word + ":" + sim);
    System.out.println("混蛋:" + hownet.getTendency("混蛋"));
}
  • result:

tendency result

本例是基于义原树的词语粒度情感极性分析,关于文本情感分析有pytextclassifier,利用深度神经网络模型、SVM分类算法实现的效果更好。

6. 近义词推荐

example: src/test/java/org/xm/word2vec/Word2vecTest.java

@Test
public void testHomoionym() throws Exception {
    List<String> result = Word2vec.getHomoionym(RAW_CORPUS_SPLIT_MODEL, "武功", 10);
    System.out.println("武功 近似词:" + result);
}

@Test
public void testHomoionymName() throws Exception {
    String model = RAW_CORPUS_SPLIT_MODEL;
    List<String> result = Word2vec.getHomoionym(model, "乔帮主", 10);
    System.out.println("乔帮主 近似词:" + result);

    List<String> result2 = Word2vec.getHomoionym(model, "阿朱", 10);
    System.out.println("阿朱 近似词:" + result2);

    List<String> result3 = Word2vec.getHomoionym(model, "少林寺", 10);
    System.out.println("少林寺 近似词:" + result3);
}
  • 训练过程:

word2vec train

  • result:

word2vec result

Word2vec词向量训练用的java版word2vec训练工具Word2VEC_java,训练语料是小说天龙八部,通过词向量实现得到近义词。 用户可以训练自定义语料,也可以用中文维基百科训练通用词向量。

Todo

文本相似性度量

  • 关键词匹配(TF-IDF、BM25)
  • 浅层语义匹配(WordEmbed隐语义模型,用word2vec或glove词向量直接累加构造的句向量)
  • 深度语义匹配模型(DSSM、CLSM、DeepMatch、MatchingFeatures、ARC-II、DeepMind见MatchZoo),BERT类语义匹配模型SentenceBERT、CoSENT见text2vec

Contact

  • Issue(建议):GitHub issues
  • 邮件我:xuming: xuming624@qq.com
  • 微信我: 加我微信号:xuming624, 备注:姓名-公司-NLP 进NLP交流群。

License

授权协议为 The Apache License 2.0,可免费用做商业用途。请在产品说明中附加similarity的链接和授权协议。

Contribute

项目代码还很粗糙,如果大家对代码有所改进,欢迎提交回本项目,在提交之前,注意以下两点:

  • test添加相应的单元测试
  • 运行所有单元测试,确保所有单测都是通过的

之后即可提交PR。

Reference

  • [DSSM] Po-Sen Huang, et al., 2013, Learning Deep Structured Semantic Models for Web Search using Clickthrough Data
  • [CLSM] Yelong Shen, et al, 2014, A Latent Semantic Model with Convolutional-Pooling Structure for Information Retrieval
  • [DeepMatch] Zhengdong Lu & Hang Li, 2013, A Deep Architecture for Matching Short Texts
  • [MatchingFeatures] Zongcheng Ji, et al., 2014, An Information Retrieval Approach to Short Text Conversation
  • [ARC-II] Baotian Hu, et al., 2015, Convolutional Neural Network Architectures for Matching Natural Language Sentences
  • [DeepMind] Aliaksei Severyn, et al., 2015, Learning to Rank Short Text Pairs with Convolutional Deep Neural Networks

About

similarity: Text similarity calculation Toolkit for Java. 文本相似度计算工具包,java编写,可用于文本相似度计算、情感分析等任务,开箱即用。

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages