Keras (TensorFlow v2) reimplementation of Re-parameterized Large Kernel Network (RepLKNet) model.
Based on Official Pytorch implementation.
Supports variable-shape inference.
pip install tfreplknet
Model name | Pretrain size | Preprocessing function | Description |
---|---|---|---|
RepLKNet | - | - | General RepLKNet architecture |
RepLKNetB | - | - | Base model size preset |
RepLKNetL | - | - | Large model size preset |
RepLKNetXL | - | - | Extra large model size preset |
RepLKNetB224In1k | 224 | preprocess_input_bl | Base model with weighs pretrained on ImageNet 21k and finetuned to 1k |
RepLKNetB224In21k | 224 | preprocess_input_bl | Base model with weighs pretrained on ImageNet 21k |
RepLKNetB384In1k | 384 | preprocess_input_bl | Base model with weighs pretrained on ImageNet 21k and finetuned to 1k |
RepLKNetL384In1k | 384 | preprocess_input_bl | Large model with weighs pretrained on ImageNet 21k and finetuned to 1k |
RepLKNetL384In21k | 384 | preprocess_input_bl | Large model with weighs pretrained on ImageNet 21k |
RepLKNetXL320In1k | 320 | preprocess_input_xl | Extra large model with weighs pretrained on MegData-73M and finetuned to 1k |
RepLKNetXL320In21k | 320 | preprocess_input_xl | Extra large model with weighs pretrained on MegData-73M (21k head) |
Default usage (without preprocessing):
from tfreplknet import RepLKNetB224In1k # + 4 other variants and input preprocessing
model = RepLKNetB224In1k() # by default will download imagenet{1k, 21k}-pretrained weights
model.compile(...)
model.fit(...)
Custom classification (with preprocessing):
from keras import layers, models
from tfreplknet import RepLKNetB224In1k, preprocess_input_bl
inputs = layers.Input(shape=(224, 224, 3), dtype='uint8')
outputs = layers.Lambda(preprocess_input_bl)(inputs)
outputs = RepLKNetB224In1k(include_top=False)(outputs)
outputs = layers.Dense(100, activation='softmax')(outputs)
model = models.Model(inputs=inputs, outputs=outputs)
model.compile(...)
model.fit(...)
For correctness, RepLKNetB224In1k
and RepLKNetB384In1k
models (original and ported) tested
with ImageNet-v2 test set.
import tensorflow as tf
import tensorflow_datasets as tfds
from tfreplknet import RepLKNetB224In1k, RepLKNetB384In1k, preprocess_input_bl
def _prepare(example):
# For RepLKNetB224In1k
image = tf.image.resize(example['image'], (256, 256), method=tf.image.ResizeMethod.BICUBIC)
image = tf.image.central_crop(image, 0.875)
# For RepLKNetB384In1k
# image = tf.image.resize(example['image'], (438, 438), method=tf.image.ResizeMethod.BICUBIC)
# image = tf.image.central_crop(image, 0.877)
image = preprocess_input_bl(image)
return image, example['label']
imagenet2 = tfds.load('imagenet_v2', split='test', shuffle_files=True)
imagenet2 = imagenet2.map(_prepare, num_parallel_calls=tf.data.AUTOTUNE)
imagenet2 = imagenet2.batch(8)
model = RepLKNetB224In1k()
model.compile('sgd', 'sparse_categorical_crossentropy', ['accuracy', 'sparse_top_k_categorical_accuracy'])
history = model.evaluate(imagenet2)
print(history)
name | original acc@1 | ported acc@1 | original acc@5 | ported acc@5 |
---|---|---|---|---|
RepLKNetB 224 1K | 75.29 | 75.13 | 92.60 | 92.88 |
RepLKNetB 384 1K | 72.77 | 76.46 | 89.91 | 93.37 |
@article{2022arXiv220306717D,
title={Scaling Up Your Kernels to 31x31: Revisiting Large Kernel Design in CNNs},
author={{Ding}, Xiaohan and {Zhang}, Xiangyu and {Zhou}, Yizhuang and {Han}, Jungong and {Ding}, Guiguang and {Sun}, Jian},
journal={arXiv preprint arXiv:2203.06717},
year={2022}
}