Shubham Goel, Angjoo Kanazawa, Jitendra Malik
University of California, Berkeley In ECCV, 2020
- Python 3.7
- Pytorch 1.1.0
- Pymesh
- SoftRas
- NMR
Please use this Dockerfile to build your environment. For convenience, we provide a pre-built docker image at shubhamgoel/birds. If interested in a non-docker build, please follow docs/installation.md
Please see docs/training.md
- From the
ucmr
directory, download the pretrained models:
wget https://people.eecs.berkeley.edu/~shubham-goel/projects/ucmr/cub_train_cam4_withcam.tar.gz && tar -vzxf cub_train_cam4_withcam.tar.gz
You should see cachedir/snapshots/cam/e400_cub_train_cam4
- Run the demo:
python -m src.demo \
--pred_pose \
--pretrained_network_path=cachedir/snapshots/cam/e400_cub_train_cam4/pred_net_600.pth \
--shape_path=cachedir/template_shape/bird_template.npy\
--img_path demo_data/birdie1.png
To evaluate camera poses errors on the entire test dataset, first download the CUB dataset and annotation files as instructed in docs/training.md. Then run
python -m src.experiments.benchmark \
--pred_pose \
--pretrained_network_path=cachedir/snapshots/cam/e400_cub_train_cam4/pred_net_600.pth \
--shape_path=cachedir/template_shape/bird_template.npy \
--nodataloader_computeMaskDt \
--split=test
If you use this code for your research, please consider citing:
@inProceedings{ucmrGoel20,
title={Shape and Viewpoints without Keypoints},
author = {Shubham Goel and
Angjoo Kanazawa and
and Jitendra Malik},
booktitle={ECCV},
year={2020}
}