Skip to content

Commit

Permalink
[Enhance] Improve control of 3D visualisation of pose lifter (open-mm…
Browse files Browse the repository at this point in the history
…lab#1481)

* Add some missing parameter documentation

* Expose vis_height / axis_azimuth

* Fix interhand axis_azimuth

* keep original default behavior

Co-authored-by: ly015 <liyining0712@gmail.com>
  • Loading branch information
2 people authored and shuheilocale committed May 5, 2023
1 parent 84f335d commit 4a34b6f
Show file tree
Hide file tree
Showing 4 changed files with 1,690 additions and 0 deletions.
259 changes: 259 additions & 0 deletions demo/interhand3d_img_demo.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,259 @@
# Copyright (c) OpenMMLab. All rights reserved.
import os
import os.path as osp
from argparse import ArgumentParser

import mmcv
import numpy as np
from xtcocotools.coco import COCO

from mmpose.apis import inference_interhand_3d_model, vis_3d_pose_result
from mmpose.apis.inference import init_pose_model
from mmpose.core import SimpleCamera


def _transform_interhand_camera_param(interhand_camera_param):
"""Transform the camera parameters in interhand2.6m dataset to the format
of SimpleCamera.
Args:
interhand_camera_param (dict): camera parameters including:
- camrot: 3x3, camera rotation matrix (world-to-camera)
- campos: 3x1, camera location in world space
- focal: 2x1, camera focal length
- princpt: 2x1, camera center
Returns:
param (dict): camera parameters including:
- R: 3x3, camera rotation matrix (camera-to-world)
- T: 3x1, camera translation (camera-to-world)
- f: 2x1, camera focal length
- c: 2x1, camera center
"""
camera_param = {}
camera_param['R'] = np.array(interhand_camera_param['camrot']).T
camera_param['T'] = np.array(interhand_camera_param['campos'])[:, None]
camera_param['f'] = np.array(interhand_camera_param['focal'])[:, None]
camera_param['c'] = np.array(interhand_camera_param['princpt'])[:, None]
return camera_param


def main():
parser = ArgumentParser()
parser.add_argument('pose_config', help='Config file for pose network')
parser.add_argument('pose_checkpoint', help='Checkpoint file')
parser.add_argument('--img-root', type=str, default='', help='Image root')
parser.add_argument(
'--json-file',
type=str,
default='',
help='Json file containing image info.')
parser.add_argument(
'--camera-param-file',
type=str,
default=None,
help='Camera parameter file for converting 3D pose predictions from '
' the pixel space to camera space. If None, keypoints in pixel space'
'will be visualized')
parser.add_argument(
'--gt-joints-file',
type=str,
default=None,
help='Optional argument. Ground truth 3D keypoint parameter file. '
'If None, gt keypoints will not be shown and keypoints in pixel '
'space will be visualized.')
parser.add_argument(
'--rebase-keypoint-height',
action='store_true',
help='Rebase the predicted 3D pose so its lowest keypoint has a '
'height of 0 (landing on the ground). This is useful for '
'visualization when the model do not predict the global position '
'of the 3D pose.')
parser.add_argument(
'--show-ground-truth',
action='store_true',
help='If True, show ground truth keypoint if it is available.')
parser.add_argument(
'--show',
action='store_true',
default=False,
help='whether to show img')
parser.add_argument(
'--out-img-root',
type=str,
default=None,
help='Root of the output visualization images. '
'Default not saving the visualization images.')
parser.add_argument(
'--device', default='cuda:0', help='Device for inference')
parser.add_argument(
'--kpt-thr', type=float, default=0.3, help='Keypoint score threshold')
parser.add_argument(
'--radius',
type=int,
default=4,
help='Keypoint radius for visualization')
parser.add_argument(
'--thickness',
type=int,
default=1,
help='Link thickness for visualization')

args = parser.parse_args()
assert args.show or (args.out_img_root != '')

coco = COCO(args.json_file)

# build the pose model from a config file and a checkpoint file
pose_model = init_pose_model(
args.pose_config, args.pose_checkpoint, device=args.device.lower())
dataset = pose_model.cfg.data['test']['type']

# load camera parameters
camera_params = None
if args.camera_param_file is not None:
camera_params = mmcv.load(args.camera_param_file)
# load ground truth joints parameters
gt_joint_params = None
if args.gt_joints_file is not None:
gt_joint_params = mmcv.load(args.gt_joints_file)

# load hand bounding boxes
det_results_list = []
for image_id, image in coco.imgs.items():
image_name = osp.join(args.img_root, image['file_name'])

ann_ids = coco.getAnnIds(image_id)
det_results = []

capture_key = str(image['capture'])
camera_key = image['camera']
frame_idx = image['frame_idx']

for ann_id in ann_ids:
ann = coco.anns[ann_id]
if camera_params is not None:
camera_param = {
key: camera_params[capture_key][key][camera_key]
for key in camera_params[capture_key].keys()
}
camera_param = _transform_interhand_camera_param(camera_param)
else:
camera_param = None
if gt_joint_params is not None:
joint_param = gt_joint_params[capture_key][str(frame_idx)]
gt_joint = np.concatenate([
np.array(joint_param['world_coord']),
np.array(joint_param['joint_valid'])
],
axis=-1)
else:
gt_joint = None

det_result = {
'image_name': image_name,
'bbox': ann['bbox'], # bbox format is 'xywh'
'camera_param': camera_param,
'keypoints_3d_gt': gt_joint
}
det_results.append(det_result)
det_results_list.append(det_results)

for i, det_results in enumerate(
mmcv.track_iter_progress(det_results_list)):

image_name = det_results[0]['image_name']

pose_results = inference_interhand_3d_model(
pose_model, image_name, det_results, dataset=dataset)

# Post processing
pose_results_vis = []
for idx, res in enumerate(pose_results):
keypoints_3d = res['keypoints_3d']
# normalize kpt score
if keypoints_3d[:, 3].max() > 1:
keypoints_3d[:, 3] /= 255
# get 2D keypoints in pixel space
res['keypoints'] = keypoints_3d[:, [0, 1, 3]]

# For model-predicted keypoints, channel 0 and 1 are coordinates
# in pixel space, and channel 2 is the depth (in mm) relative
# to root joints.
# If both camera parameter and absolute depth of root joints are
# provided, we can transform keypoint to camera space for better
# visualization.
camera_param = res['camera_param']
keypoints_3d_gt = res['keypoints_3d_gt']
if camera_param is not None and keypoints_3d_gt is not None:
# build camera model
camera = SimpleCamera(camera_param)
# transform gt joints from world space to camera space
keypoints_3d_gt[:, :3] = camera.world_to_camera(
keypoints_3d_gt[:, :3])

# transform relative depth to absolute depth
keypoints_3d[:21, 2] += keypoints_3d_gt[20, 2]
keypoints_3d[21:, 2] += keypoints_3d_gt[41, 2]

# transform keypoints from pixel space to camera space
keypoints_3d[:, :3] = camera.pixel_to_camera(
keypoints_3d[:, :3])

# rotate the keypoint to make z-axis correspondent to height
# for better visualization
vis_R = np.array([[1, 0, 0], [0, 0, -1], [0, 1, 0]])
keypoints_3d[:, :3] = keypoints_3d[:, :3] @ vis_R
if keypoints_3d_gt is not None:
keypoints_3d_gt[:, :3] = keypoints_3d_gt[:, :3] @ vis_R

# rebase height (z-axis)
if args.rebase_keypoint_height:
valid = keypoints_3d[..., 3] > 0
keypoints_3d[..., 2] -= np.min(
keypoints_3d[valid, 2], axis=-1, keepdims=True)
res['keypoints_3d'] = keypoints_3d
res['keypoints_3d_gt'] = keypoints_3d_gt

# Add title
instance_id = res.get('track_id', idx)
res['title'] = f'Prediction ({instance_id})'
pose_results_vis.append(res)
# Add ground truth
if args.show_ground_truth:
if keypoints_3d_gt is None:
print('Fail to show ground truth. Please make sure that'
' gt-joints-file is provided.')
else:
gt = res.copy()
if args.rebase_keypoint_height:
valid = keypoints_3d_gt[..., 3] > 0
keypoints_3d_gt[..., 2] -= np.min(
keypoints_3d_gt[valid, 2], axis=-1, keepdims=True)
gt['keypoints_3d'] = keypoints_3d_gt
gt['title'] = f'Ground truth ({instance_id})'
pose_results_vis.append(gt)

# Visualization
if args.out_img_root is None:
out_file = None
else:
os.makedirs(args.out_img_root, exist_ok=True)
out_file = osp.join(args.out_img_root, f'vis_{i}.jpg')

vis_3d_pose_result(
pose_model,
result=pose_results_vis,
img=det_results[0]['image_name'],
out_file=out_file,
dataset=dataset,
show=args.show,
kpt_score_thr=args.kpt_thr,
radius=args.radius,
thickness=args.thickness,
axis_azimuth=-115,
)


if __name__ == '__main__':
main()
Loading

0 comments on commit 4a34b6f

Please sign in to comment.