-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathoption.py
112 lines (94 loc) · 3.96 KB
/
option.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import argparse
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--seed", type=int, default=1)
# models
parser.add_argument("--pretrain", type=str)
parser.add_argument("--model", type=str, default="EDSR")
# augmentations
parser.add_argument("--use_moa", action="store_true")
parser.add_argument("--augs", nargs="*", default=["none"])
parser.add_argument("--prob", nargs="*", default=[1.0])
parser.add_argument("--mix_p", nargs="*")
parser.add_argument("--alpha", nargs="*", default=[1.0])
parser.add_argument("--aux_prob", type=float, default=1.0)
parser.add_argument("--aux_alpha", type=float, default=1.2)
# dataset
parser.add_argument("--dataset_root", type=str, default="")
parser.add_argument("--dataset", type=str, default="DIV2K_SR")
parser.add_argument("--camera", type=str, default="all") # RealSR
parser.add_argument("--div2k_range", type=str, default="1-800/801-810")
parser.add_argument("--scale", type=int, default=4) # SR
parser.add_argument("--sigma", type=int, default=10) # DN
parser.add_argument("--quality", type=int, default=10) # DeJPEG
parser.add_argument("--type", type=int, default=1) # DeBlur
# training setups
parser.add_argument("--lr", type=float, default=1e-4)
parser.add_argument("--decay", type=str, default="200-400-600")
parser.add_argument("--gamma", type=int, default=0.5)
parser.add_argument("--patch_size", type=int, default=48)
parser.add_argument("--batch_size", type=int, default=16)
parser.add_argument("--max_steps", type=int, default=700000)
parser.add_argument("--eval_steps", type=int, default=1000)
parser.add_argument("--num_workers", type=int, default=2)
parser.add_argument("--gclip", type=int, default=0)
# misc
parser.add_argument("--test_only", action="store_true")
parser.add_argument("--save_result", action="store_true")
parser.add_argument("--ckpt_root", type=str, default="./pt")
parser.add_argument("--save_root", type=str, default="./output")
return parser.parse_args()
def make_template(opt):
opt.strict_load = opt.test_only
# model
if "EDSR" in opt.model:
opt.num_blocks = 32
opt.num_channels = 256
opt.res_scale = 0.1
if "RCAN" in opt.model:
opt.num_groups = 10
opt.num_blocks = 20
opt.num_channels = 64
opt.reduction = 16
opt.res_scale = 1.0
opt.max_steps = 1000000
opt.decay = "200-400-600-800"
opt.gclip = 0.5 if opt.pretrain else opt.gclip
if "CARN" in opt.model:
opt.num_groups = 3
opt.num_blocks = 3
opt.num_channels = 64
opt.res_scale = 1.0
opt.batch_size = 64
opt.decay = "400"
# training setup
if "DN" in opt.dataset or "JPEG" in opt.dataset:
opt.max_steps = 1000000
opt.decay = "300-550-800"
if "RealSR" in opt.dataset:
opt.patch_size *= opt.scale # identical (LR, HR) resolution
# evaluation setup
opt.crop = 6 if "DIV2K" in opt.dataset else 0
opt.crop += opt.scale if "SR" in opt.dataset else 4
# note: we tested on color DN task
if "DN" in opt.dataset:
opt.eval_y_only = False
else:
opt.eval_y_only = True
# default augmentation policies
if opt.use_moa:
opt.augs = ["blend", "rgb", "mixup", "cutout", "cutmix", "cutmixup", "cutblur"]
opt.prob = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
opt.alpha = [0.6, 1.0, 1.2, 0.001, 0.7, 0.7, 0.7]
opt.aux_prob, opt.aux_alpha = 1.0, 1.2
opt.mix_p = None
if "RealSR" in opt.dataset:
opt.mix_p = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.4]
if "DN" in opt.dataset or "JPEG" in opt.dataset:
opt.prob = [0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6]
if "CARN" in opt.model and not "RealSR" in opt.dataset:
opt.prob = [0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2]
def get_option():
opt = parse_args()
make_template(opt)
return opt