Skip to content

shuntama/srdd

Repository files navigation

Image Super-Resolution with Deep Dictionary (ECCV 2022)

This repository provides the official PyTorch implementation of the following paper:
Shunta Maeda, "Image Super-Resolution with Deep Dictionary", ECCV 2022.

This repository is based on the official CutBlur repository.
Other than the addition of the proposed model model/srdd.py, changes were made only to solver.py and inference.py.

Dataset

We use the DIV2K dataset to train the model. Download and unpack the tar file any directory you want.
Important: For the DIV2K dataset only, all the train and valid images should be placed in the DIV2K_train_HR and DIV2K_train_LR_bicubic directories (We parse train and valid images using --div2k_range argument).

Train

python main.py \
    --model SRDD \
    --dataset DIV2K_SR \
    --div2k_range 1-800/801-810 \
    --scale 4 \
    --dataset_root <directory_of_dataset> \
    --save_result \
    --patch_size 48 \
    --batch_size 32 \
    --lr 2e-4 \
    --decay "200-300-350-375" \
    --max_steps 400000

Test

python inference.py \
    --model SRDD \
    --scale 4 \
    --pretrain <path_of_pretrained_model> \
    --dataset_root ./input \
    --save_root ./output

Updates

  • 14 July, 2022: Initial upload.

Acknowledgements

This code is built on CutBlur. We thank the authors for sharing their codes.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages