This package provides the following bindings for parsnip package:
- the
tree
engine fordecision_tree
; - the
catboost
engine forboost_tree
; - the
lightGBM
engine forboost_tree
.
docs
Not on CRAN yet.
remotes::install_github("curso-r/treesnip")
# decision_tree
model <- parsnip::decision_tree()
parsnip::set_engine(model, "tree")
# boost_tree
model <- parsnip::boost_tree(mtry = 1, trees = 50)
parsnip::set_engine(model, "catboost")
parsnip::set_engine(model, "lightgbm")
decision_tree()
parsnip |
tree |
---|---|
min_n |
minsize |
cost_complexity |
mindev |
boost_tree()
parsnip |
catboost |
lightGBM |
---|---|---|
mtry |
rsm |
feature_fraction |
trees |
iterations |
num_iterations |
min_n |
min_data_in_leaf |
min_data_in_leaf |
tree_depth |
depth |
max_depth |
learn_rate |
learning_rate |
learning_rate |
loss_reduction |
Not found |
min_gain_to_split |
sample_size |
subsample |
bagging_fraction |
fun |
tree |
catboost |
lightGBM |
---|---|---|---|
set_fit |
✔️ |
✔️ |
✔️ |
set_model_arg |
✔️ |
✔️ |
✔️ |
set_pred |
✔️ |
✔️ |
✔️ |
train |
✔️ |
✔️ |
✔️ |
predict |
✔️ |
✔️ |
✔️ |
multi_predict |
⚪ |
✔️ |
✔️ |
tests |
✔️ |
✔️ |
✔️ |