Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add mock class for specific workflow #416

Merged
merged 6 commits into from
Dec 13, 2023
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,8 @@
from .attention import CrossAttention as CrossAttention1f
from .attention import SpatialTransformer as SpatialTransformer1f
from .linear import Linear as Linear1f
from .openaimodel import Upsample as Upsample1f
from .openaimodel import UNetModel as UNetModel1f

if hasattr(comfy.ops, "disable_weight_init"):
comfy_ops_Linear = comfy.ops.disable_weight_init.Linear
Expand All @@ -21,6 +23,8 @@
comfy.ldm.modules.attention.CrossAttention: CrossAttention1f,
comfy.ldm.modules.attention.SpatialTransformer: SpatialTransformer1f,
comfy_ops_Linear: Linear1f,
comfy.ldm.modules.diffusionmodules.openaimodel.Upsample: Upsample1f,
comfy.ldm.modules.diffusionmodules.openaimodel.UNetModel: UNetModel1f,
}


Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -113,7 +113,8 @@ def forward(self, x, context=None, transformer_options={}):
x = self.proj_in(x)
# NOTE: rearrange in ComfyUI is replaced with reshape and use -1 to enable for
# dynamic shape inference (multi resolution compilation)
x = x.reshape(b, c, -1).permute(0, 2, 1)
x = x.flatten(2, 3).permute(0, 2, 1)
# x = x.reshape(b, c, -1).permute(0, 2, 1)
# x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
Comment on lines +116 to 118
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

最原始的 ComfyUI 写法,以及上一版的 onediff 写法都保留,是因为这是一个修正动态 shape 问题的例子。
原始需求:

(b, c, h, w) -> (b, h*w, c)

第一版 onediff 的写法:

x = x.reshape(b, c, -1).permute(0, 2, 1)

此时 reshape 中的 b, c 如果不变,只有一个维度变化(-1 那个维度),那么 reshape 可以动态推导出 -1 那个维度的具体值。

但是,如果 -1 维度变化的同时, b 也变化,reshape 就无法正常推导了。
所以要用最新的版本:

x = x.flatten(2, 3).permute(0, 2, 1)

先把 (b, c, h, w) 中的后 2 个维度压到一起 (b, c, (h*w)),然后调整维度顺序,得到 (b, (h,w), c,达到与之前等价的效果。

if self.use_linear:
x = self.proj_in(x)
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,153 @@
import comfy
import oneflow as th # 'th' is the way ComfyUI name the torch
import oneflow.nn.functional as F
from onediff.infer_compiler.transform import proxy_class
from onediff.infer_compiler.transform import transform_mgr

onediff_comfy = transform_mgr.transform_package("comfy")


class Upsample(proxy_class(comfy.ldm.modules.diffusionmodules.openaimodel.Upsample)):
# https://github.com/comfyanonymous/ComfyUI/blob/b0aab1e4ea3dfefe09c4f07de0e5237558097e22/comfy/ldm/modules/diffusionmodules/openaimodel.py#L82
def forward(self, x, output_shape=None):
assert x.shape[1] == self.channels
if output_shape is not None and isinstance(output_shape, th.Tensor):
if self.dims == 3:
raise ValueError("output_shape shoud not be Tensor for dims == 3")
else:
x = F.interpolate_like(x, like=output_shape, mode="nearest")
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这个是 oneflow 新增的算子

else:
if self.dims == 3:
shape = [x.shape[2], x.shape[3] * 2, x.shape[4] * 2]
if output_shape is not None:
shape[1] = output_shape[3]
shape[2] = output_shape[4]
else:
shape = [x.shape[2] * 2, x.shape[3] * 2]
if output_shape is not None:
shape[0] = output_shape[2]
shape[1] = output_shape[3]

x = F.interpolate(x, size=shape, mode="nearest")

if self.use_conv:
x = self.conv(x)
return x


class UNetModel(proxy_class(comfy.ldm.modules.diffusionmodules.openaimodel.UNetModel)):
# https://github.com/comfyanonymous/ComfyUI/blob/b0aab1e4ea3dfefe09c4f07de0e5237558097e22/comfy/ldm/modules/diffusionmodules/openaimodel.py#L823
def forward(
self,
x,
timesteps=None,
context=None,
y=None,
control=None,
transformer_options={},
**kwargs
):
timestep_embedding = (
onediff_comfy.ldm.modules.diffusionmodules.util.timestep_embedding
)
forward_timestep_embed = (
onediff_comfy.ldm.modules.diffusionmodules.openaimodel.forward_timestep_embed
)
apply_control = (
onediff_comfy.ldm.modules.diffusionmodules.openaimodel.apply_control
)

transformer_options["original_shape"] = list(x.shape)
transformer_options["transformer_index"] = 0
transformer_patches = transformer_options.get("patches", {})

num_video_frames = kwargs.get("num_video_frames", self.default_num_video_frames)
image_only_indicator = kwargs.get(
"image_only_indicator", self.default_image_only_indicator
)
time_context = kwargs.get("time_context", None)

assert (y is not None) == (
self.num_classes is not None
), "must specify y if and only if the model is class-conditional"
hs = []
t_emb = timestep_embedding(
timesteps, self.model_channels, repeat_only=False
).to(x.dtype)
emb = self.time_embed(t_emb)

if self.num_classes is not None:
assert y.shape[0] == x.shape[0]
emb = emb + self.label_emb(y)

h = x
for id, module in enumerate(self.input_blocks):
transformer_options["block"] = ("input", id)
h = forward_timestep_embed(
module,
h,
emb,
context,
transformer_options,
time_context=time_context,
num_video_frames=num_video_frames,
image_only_indicator=image_only_indicator,
)
h = apply_control(h, control, "input")
if "input_block_patch" in transformer_patches:
patch = transformer_patches["input_block_patch"]
for p in patch:
h = p(h, transformer_options)

hs.append(h)
if "input_block_patch_after_skip" in transformer_patches:
patch = transformer_patches["input_block_patch_after_skip"]
for p in patch:
h = p(h, transformer_options)

transformer_options["block"] = ("middle", 0)
h = forward_timestep_embed(
self.middle_block,
h,
emb,
context,
transformer_options,
time_context=time_context,
num_video_frames=num_video_frames,
image_only_indicator=image_only_indicator,
)
h = apply_control(h, control, "middle")

for id, module in enumerate(self.output_blocks):
transformer_options["block"] = ("output", id)
hsp = hs.pop()
hsp = apply_control(hsp, control, "output")

if "output_block_patch" in transformer_patches:
patch = transformer_patches["output_block_patch"]
for p in patch:
h, hsp = p(h, hsp, transformer_options)

h = th.cat([h, hsp], dim=1)
del hsp
if len(hs) > 0:
# output_shape = hs[-1].shape
output_shape = hs[-1]
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

此处修改为 tensor,目的是传给 oneflow 的参数是 tensor,这样每次推导时能拿到 tensor 的 meta 信息。之前的 shape 作为属性,无法每次推导时更新。

else:
output_shape = None
h = forward_timestep_embed(
module,
h,
emb,
context,
transformer_options,
output_shape,
time_context=time_context,
num_video_frames=num_video_frames,
image_only_indicator=image_only_indicator,
)
h = h.type(x.dtype)
if self.predict_codebook_ids:
return self.id_predictor(h)
else:
return self.out(h)
Loading