Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Reuse pipe #647

Merged
merged 24 commits into from
Mar 24, 2024
Merged
Changes from 13 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
181 changes: 181 additions & 0 deletions onediff_diffusers_extensions/examples/text_to_image_sdxl_reuse_pipe.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,181 @@
"""
Torch run example: python examples/text_to_image_sdxl.py
Compile to oneflow graph example: python examples/text_to_image_sdxl.py
"""
import os
import argparse

import oneflow as flow
import torch

from onediff.infer_compiler import oneflow_compile
from onediff.infer_compiler import oneflow_compiler_config
from onediff.schedulers import EulerDiscreteScheduler
from diffusers import StableDiffusionXLPipeline
# import diffusers
# diffusers.logging.set_verbosity_info()

parser = argparse.ArgumentParser()
parser.add_argument(
"--base", type=str, default="stabilityai/stable-diffusion-xl-base-1.0"
)
parser.add_argument("--variant", type=str, default="fp16")
parser.add_argument(
"--prompt",
type=str,
default="street style, detailed, raw photo, woman, face, shot on CineStill 800T",
)
parser.add_argument("--height", type=int, default=1024)
parser.add_argument("--width", type=int, default=1024)
parser.add_argument("--n_steps", type=int, default=30)
parser.add_argument("--saved_image", type=str, required=False, default="sdxl-out.png")
parser.add_argument("--seed", type=int, default=1)
parser.add_argument(
"--compile_unet",
type=(lambda x: str(x).lower() in ["true", "1", "yes"]),
default=True,
)
parser.add_argument(
"--compile_vae",
type=(lambda x: str(x).lower() in ["true", "1", "yes"]),
default=True,
)
parser.add_argument(
"--run_multiple_resolutions",
type=(lambda x: str(x).lower() in ["true", "1", "yes"]),
default=True,
)
args = parser.parse_args()

# Normal SDXL pipeline init.
OUTPUT_TYPE = "pil"

# SDXL base: StableDiffusionXLPipeline
scheduler = EulerDiscreteScheduler.from_pretrained(args.base, subfolder="scheduler")
base = StableDiffusionXLPipeline.from_pretrained(
args.base,
scheduler=scheduler,
torch_dtype=torch.float16,
variant=args.variant,
use_safetensors=True,
)
base.to("cuda")


oneflow_compiler_config.mlir_enable_inference_optimization = False
strint marked this conversation as resolved.
Show resolved Hide resolved
# Compile unet with oneflow
if args.compile_unet:
print("Compiling unet with oneflow.")
compiled_unet = oneflow_compile(base.unet)
compiled_unet_eager = base.unet
base.unet = compiled_unet

# Compile vae with oneflow
if args.compile_vae:
print("Compiling vae with oneflow.")
compiled_decoder = oneflow_compile(base.vae.decoder)
compiled_decoder_eager = base.vae.decoder
base.vae.decoder = compiled_decoder

# Warmup with run
# Will do compilatioin in the first run
print("Warmup with running graphs...")
torch.manual_seed(args.seed)
image = base(
prompt=args.prompt,
height=args.height,
width=args.width,
num_inference_steps=args.n_steps,
generator=torch.manual_seed(0),
output_type=OUTPUT_TYPE,
).images
del base

torch.cuda.empty_cache()

print("loading new base")
new_base = StableDiffusionXLPipeline.from_pretrained(
"dataautogpt3/OpenDalleV1.1",
scheduler=scheduler,
torch_dtype=torch.float16,
variant=args.variant,
use_safetensors=True,
)
new_base.to("cuda")

print("New base running by torch backend")
image = new_base(
prompt=args.prompt,
height=args.height,
width=args.width,
num_inference_steps=args.n_steps,
generator=torch.manual_seed(0),
output_type=OUTPUT_TYPE,
).images
image[0].save(f"new_base_without_graph_h{args.height}-w{args.width}-{args.saved_image}")
image_eager = image[0]


# Update the unet and vae
# load_state_dict(state_dict, strict=True, assign=False), assign is False means copying them inplace into the module’s current parameters and buffers.
# Reference: https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.load_state_dict
print("Loading state_dict of new base into compiled graph")
compiled_unet_eager.load_state_dict(new_base.unet.state_dict())
compiled_decoder_eager.load_state_dict(new_base.vae.decoder.state_dict())

new_base.unet = compiled_unet
new_base.vae.decoder = compiled_decoder

torch.cuda.empty_cache()

# Normal SDXL run
print("Re-use the compiled graph")
image = new_base(
prompt=args.prompt,
height=args.height,
width=args.width,
num_inference_steps=args.n_steps,
generator=torch.manual_seed(0),
output_type=OUTPUT_TYPE,
).images
image[0].save(f"new_base_reuse_graph_h{args.height}-w{args.width}-{args.saved_image}")
image_graph = image[0]

from skimage.metrics import structural_similarity
import numpy as np

ssim = structural_similarity(
np.array(image_eager), np.array(image_graph), channel_axis=-1, data_range=255
)
print(f"ssim between naive torch and re-used graph is {ssim}")


# Should have no compilation for these new input shape
print("Test run with multiple resolutions...")
if args.run_multiple_resolutions:
sizes = [960, 720, 896, 768]
if "CI" in os.environ:
sizes = [360]
for h in sizes:
for w in sizes:
image = new_base(
prompt=args.prompt,
height=h,
width=w,
num_inference_steps=args.n_steps,
generator=torch.manual_seed(0),
output_type=OUTPUT_TYPE,
).images


# print("Test run with other another uncommon resolution...")
# if args.run_multiple_resolutions:
# h = 544
# w = 408
# image = base(
# prompt=args.prompt,
# height=h,
# width=w,
# num_inference_steps=args.n_steps,
# output_type=OUTPUT_TYPE,
# ).images