The computer vision theory of
- Camera Geometry
- Distortion and Undistortion in Fisheye Lens Model
- Distortion and Undistortion in Pinhole Lens Model
- ViewMatrix Decomposition
- Intrinsic Matrix Decomposition
K = [[fx 0 cx]
[0 fy cy]
[0 0 1 ]]
Extrinsic = [[r11 r12 r13 t1]
[r21 r22 r23 t2]
[r31 r32 r33 t3]]
R = [[r11 r12 r13]
[r21 r22 r23]
[r31 r32 r33]]
viewMatrix_3by3 = [[fx*r11 + 0*r21 + cx*r31, fx*r12 + 0*r22 + cx*r32, fx*r13 + 0*r23 + cx*r33],
[0*r11 + fy*r21 + cy*r31, 0*r12 + fy*r22 + cy*r32, 0*r13 + fy*r23 + cy*r33],
[0*r11 + 0*r21 + 1*r31, 0*r12 + 0*r22 + 1*r32, 0*r13 + 0*r23 + 1*r33]]
viewMatrix_3by3[2] = [0*r11 + 0*r21 + 1*r31, 0*r12 + 0*r22 + 1*r32, 0*r13 + 0*r23 + 1*r33]
= [r31, r32, r33]
m1 = viewMatrix_3by3 @ viewMatrix_3by3.T
m1[0, 0] = (fx*r11 + cx*r31)^2 + (fx*r12 + cx*r32)^2 + (fx*r13 + cx*r33)^2
m1[2, 2] = [r31, r32, r33] . [r31, r32, r33]
= r31^2 + r32^2 + r33^2
= 1
m2[0, 0] = fx^2 * (r11^2 + r12^2 + r13^2) + 2*fx*cx * (r11*r31 + r12*r32 + r13*r33) + cx^2 * (r31^2 + r32^2 + r33^2) = fx^2 + cx^2
- Extrinsic Matrix Decompostion