Skip to content

Commit

Permalink
[MLIR][GPUToNVVM] support fastMath and other non-supported mathOp (ll…
Browse files Browse the repository at this point in the history
…vm#99890)

Support fastMath and other non-supported mathOp which only require float
operands and call libdevice function directly to nvvm.

1. lowering mathOp with fastMath attribute to correct libdevice
intrinsic.
2. some mathOp in math dialect has been lowered to libdevice now, but it
doesn't cover all mathOp. so this mr lowers all the remaining mathOp
which only require float operands.
  • Loading branch information
runseny authored Jul 25, 2024
1 parent 534e2dd commit f6431f0
Show file tree
Hide file tree
Showing 4 changed files with 312 additions and 50 deletions.
34 changes: 25 additions & 9 deletions mlir/lib/Conversion/GPUCommon/OpToFuncCallLowering.h
Original file line number Diff line number Diff line change
Expand Up @@ -15,9 +15,9 @@

namespace mlir {

/// Rewriting that replace SourceOp with a CallOp to `f32Func` or `f64Func`
/// depending on the element type that Op operates upon. The function
/// declaration is added in case it was not added before.
/// Rewriting that replace SourceOp with a CallOp to `f32Func` or `f64Func` or
/// `f32ApproxFunc` depending on the element type and the fastMathFlag of that
/// Op. The function declaration is added in case it was not added before.
///
/// If the input values are of f16 type, the value is first casted to f32, the
/// function called and then the result casted back.
Expand All @@ -27,13 +27,22 @@ namespace mlir {
///
/// will be transformed into
/// llvm.call @__nv_expf(%arg_f32) : (f32) -> f32
///
/// If the fastMathFlag attribute of SourceOp is `afn` or `fast`, this Op lowers
/// to the approximate calculation function.
///
/// Also example with NVVM:
/// %exp_f32 = math.exp %arg_f32 fastmath<afn> : f32
///
/// will be transformed into
/// llvm.call @__nv_fast_expf(%arg_f32) : (f32) -> f32
template <typename SourceOp>
struct OpToFuncCallLowering : public ConvertOpToLLVMPattern<SourceOp> {
public:
explicit OpToFuncCallLowering(LLVMTypeConverter &lowering, StringRef f32Func,
StringRef f64Func)
StringRef f64Func, StringRef f32ApproxFunc)
: ConvertOpToLLVMPattern<SourceOp>(lowering), f32Func(f32Func),
f64Func(f64Func) {}
f64Func(f64Func), f32ApproxFunc(f32ApproxFunc) {}

LogicalResult
matchAndRewrite(SourceOp op, typename SourceOp::Adaptor adaptor,
Expand All @@ -55,7 +64,8 @@ struct OpToFuncCallLowering : public ConvertOpToLLVMPattern<SourceOp> {
Type resultType = castedOperands.front().getType();
Type funcType = getFunctionType(resultType, castedOperands);
StringRef funcName =
getFunctionName(cast<LLVM::LLVMFunctionType>(funcType).getReturnType());
getFunctionName(cast<LLVM::LLVMFunctionType>(funcType).getReturnType(),
op.getFastmath());
if (funcName.empty())
return failure();

Expand Down Expand Up @@ -90,9 +100,14 @@ struct OpToFuncCallLowering : public ConvertOpToLLVMPattern<SourceOp> {
return LLVM::LLVMFunctionType::get(resultType, operandTypes);
}

StringRef getFunctionName(Type type) const {
if (isa<Float32Type>(type))
return f32Func;
StringRef getFunctionName(Type type, arith::FastMathFlags flag) const {
if (isa<Float32Type>(type)) {
if (((uint32_t)arith::FastMathFlags::afn & (uint32_t)flag) &&
!f32ApproxFunc.empty())
return f32ApproxFunc;
else
return f32Func;
}
if (isa<Float64Type>(type))
return f64Func;
return "";
Expand All @@ -113,6 +128,7 @@ struct OpToFuncCallLowering : public ConvertOpToLLVMPattern<SourceOp> {

const std::string f32Func;
const std::string f64Func;
const std::string f32ApproxFunc;
};

} // namespace mlir
Expand Down
65 changes: 47 additions & 18 deletions mlir/lib/Conversion/GPUToNVVM/LowerGpuOpsToNVVMOps.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -309,10 +309,11 @@ void mlir::configureGpuToNVVMConversionLegality(ConversionTarget &target) {
target.addLegalDialect<::mlir::LLVM::LLVMDialect>();
target.addLegalDialect<::mlir::NVVM::NVVMDialect>();
target.addIllegalDialect<gpu::GPUDialect>();
target.addIllegalOp<LLVM::CosOp, LLVM::ExpOp, LLVM::Exp2Op, LLVM::FAbsOp,
LLVM::FCeilOp, LLVM::FFloorOp, LLVM::FRemOp, LLVM::LogOp,
LLVM::Log10Op, LLVM::Log2Op, LLVM::PowOp, LLVM::SinOp,
LLVM::SqrtOp>();
target.addIllegalOp<LLVM::CopySignOp, LLVM::CosOp, LLVM::ExpOp, LLVM::Exp2Op,
LLVM::FAbsOp, LLVM::FCeilOp, LLVM::FFloorOp, LLVM::FMAOp,
LLVM::FRemOp, LLVM::LogOp, LLVM::Log10Op, LLVM::Log2Op,
LLVM::PowOp, LLVM::RoundEvenOp, LLVM::RoundOp,
LLVM::SinOp, LLVM::SqrtOp>();

// TODO: Remove once we support replacing non-root ops.
target.addLegalOp<gpu::YieldOp, gpu::GPUModuleOp, gpu::ModuleEndOp>();
Expand All @@ -321,9 +322,11 @@ void mlir::configureGpuToNVVMConversionLegality(ConversionTarget &target) {
template <typename OpTy>
static void populateOpPatterns(LLVMTypeConverter &converter,
RewritePatternSet &patterns, StringRef f32Func,
StringRef f64Func) {
StringRef f64Func,
StringRef f32ApproxFunc = "") {
patterns.add<ScalarizeVectorOpLowering<OpTy>>(converter);
patterns.add<OpToFuncCallLowering<OpTy>>(converter, f32Func, f64Func);
patterns.add<OpToFuncCallLowering<OpTy>>(converter, f32Func, f64Func,
f32ApproxFunc);
}

void mlir::populateGpuSubgroupReduceOpLoweringPattern(
Expand Down Expand Up @@ -370,42 +373,68 @@ void mlir::populateGpuToNVVMConversionPatterns(LLVMTypeConverter &converter,
StringAttr::get(&converter.getContext(),
NVVM::NVVMDialect::getMaxntidAttrName()));

populateOpPatterns<arith::RemFOp>(converter, patterns, "__nv_fmodf",
"__nv_fmod");
populateOpPatterns<math::AbsFOp>(converter, patterns, "__nv_fabsf",
"__nv_fabs");
populateOpPatterns<math::AcosOp>(converter, patterns, "__nv_acosf",
"__nv_acos");
populateOpPatterns<math::AcoshOp>(converter, patterns, "__nv_acoshf",
"__nv_acosh");
populateOpPatterns<math::AsinOp>(converter, patterns, "__nv_asinf",
"__nv_asin");
populateOpPatterns<math::AsinhOp>(converter, patterns, "__nv_asinhf",
"__nv_asinh");
populateOpPatterns<math::AtanOp>(converter, patterns, "__nv_atanf",
"__nv_atan");
populateOpPatterns<math::Atan2Op>(converter, patterns, "__nv_atan2f",
"__nv_atan2");
populateOpPatterns<math::AtanhOp>(converter, patterns, "__nv_atanhf",
"__nv_atanh");
populateOpPatterns<math::CbrtOp>(converter, patterns, "__nv_cbrtf",
"__nv_cbrt");
populateOpPatterns<math::CeilOp>(converter, patterns, "__nv_ceilf",
"__nv_ceil");
populateOpPatterns<math::CosOp>(converter, patterns, "__nv_cosf", "__nv_cos");
populateOpPatterns<math::CopySignOp>(converter, patterns, "__nv_copysignf",
"__nv_copysign");
populateOpPatterns<math::CosOp>(converter, patterns, "__nv_cosf", "__nv_cos",
"__nv_fast_cosf");
populateOpPatterns<math::CoshOp>(converter, patterns, "__nv_coshf",
"__nv_cosh");
populateOpPatterns<math::ErfOp>(converter, patterns, "__nv_erff", "__nv_erf");
populateOpPatterns<math::ExpOp>(converter, patterns, "__nv_expf", "__nv_exp");
populateOpPatterns<math::ExpOp>(converter, patterns, "__nv_expf", "__nv_exp",
"__nv_fast_expf");
populateOpPatterns<math::Exp2Op>(converter, patterns, "__nv_exp2f",
"__nv_exp2");
populateOpPatterns<math::ExpM1Op>(converter, patterns, "__nv_expm1f",
"__nv_expm1");
populateOpPatterns<math::FloorOp>(converter, patterns, "__nv_floorf",
"__nv_floor");
populateOpPatterns<arith::RemFOp>(converter, patterns, "__nv_fmodf",
"__nv_fmod");
populateOpPatterns<math::LogOp>(converter, patterns, "__nv_logf", "__nv_log");
populateOpPatterns<math::FmaOp>(converter, patterns, "__nv_fmaf", "__nv_fma");
populateOpPatterns<math::LogOp>(converter, patterns, "__nv_logf", "__nv_log",
"__nv_fast_logf");
populateOpPatterns<math::Log10Op>(converter, patterns, "__nv_log10f",
"__nv_log10", "__nv_fast_log10f");
populateOpPatterns<math::Log1pOp>(converter, patterns, "__nv_log1pf",
"__nv_log1p");
populateOpPatterns<math::Log10Op>(converter, patterns, "__nv_log10f",
"__nv_log10");
populateOpPatterns<math::Log2Op>(converter, patterns, "__nv_log2f",
"__nv_log2");
populateOpPatterns<math::PowFOp>(converter, patterns, "__nv_powf",
"__nv_pow");
"__nv_log2", "__nv_fast_log2f");
populateOpPatterns<math::PowFOp>(converter, patterns, "__nv_powf", "__nv_pow",
"__nv_fast_powf");
populateOpPatterns<math::RoundOp>(converter, patterns, "__nv_roundf",
"__nv_round");
populateOpPatterns<math::RoundEvenOp>(converter, patterns, "__nv_rintf",
"__nv_rint");
populateOpPatterns<math::RsqrtOp>(converter, patterns, "__nv_rsqrtf",
"__nv_rsqrt");
populateOpPatterns<math::SinOp>(converter, patterns, "__nv_sinf", "__nv_sin");
populateOpPatterns<math::SinOp>(converter, patterns, "__nv_sinf", "__nv_sin",
"__nv_fast_sinf");
populateOpPatterns<math::SinhOp>(converter, patterns, "__nv_sinhf",
"__nv_sinh");
populateOpPatterns<math::SqrtOp>(converter, patterns, "__nv_sqrtf",
"__nv_sqrt");
populateOpPatterns<math::TanOp>(converter, patterns, "__nv_tanf", "__nv_tan",
"__nv_fast_tanf");
populateOpPatterns<math::TanhOp>(converter, patterns, "__nv_tanhf",
"__nv_tanh");
populateOpPatterns<math::TanOp>(converter, patterns, "__nv_tanf", "__nv_tan");
}
6 changes: 4 additions & 2 deletions mlir/lib/Conversion/MathToROCDL/MathToROCDL.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -38,9 +38,11 @@ using namespace mlir;
template <typename OpTy>
static void populateOpPatterns(LLVMTypeConverter &converter,
RewritePatternSet &patterns, StringRef f32Func,
StringRef f64Func) {
StringRef f64Func,
StringRef f32ApproxFunc = "") {
patterns.add<ScalarizeVectorOpLowering<OpTy>>(converter);
patterns.add<OpToFuncCallLowering<OpTy>>(converter, f32Func, f64Func);
patterns.add<OpToFuncCallLowering<OpTy>>(converter, f32Func, f64Func,
f32ApproxFunc);
}

void mlir::populateMathToROCDLConversionPatterns(LLVMTypeConverter &converter,
Expand Down
Loading

0 comments on commit f6431f0

Please sign in to comment.