Skip to content

Commit

Permalink
created example of code
Browse files Browse the repository at this point in the history
  • Loading branch information
albertoabellagarcia committed May 28, 2024
1 parent f6747a9 commit fa7c9b3
Showing 1 changed file with 80 additions and 33 deletions.
113 changes: 80 additions & 33 deletions MLModel/code/code_for_using_dataModel.MachineLearning_MLModel.py
Original file line number Diff line number Diff line change
@@ -1,38 +1,9 @@

# # This code allows you to install a orion-ld broker in a linux system
# # The manuals are here https://github.com/FIWARE/context.Orion-LD/tree/develop/doc/manuals-ld
#
# # INSTALL NGSI LD broker (OrionLD)
# sudo docker pull mongo:3.6
# sudo docker pull fiware/orion-ld
# sudo docker network create fiware_default
# sudo docker run -d --name=mongo-db --network=fiware_default --expose=27017 mongo:3.6 --bind_ip_all --smallfiles
# sudo docker run -d --name fiware-orionld -h orion --network=fiware_default -p 1026:1026 fiware/orion-ld -dbhost mongo-db
#
# # TO RELAUNCH (only if you have already installed a broker in the same machine)
# sudo docker stop fiware-orionld
# sudo docker rm fiware-orionld
# sudo docker stop mongo-db
# sudo docker rm mongo-db
# sudo docker network rm fiware_default
# # The code for installing different versions of context brokers are located after the code
#
# # CHECK INSTANCES
# # Check the broker is running
# curl -X GET 'http://localhost:1026/version'
#
# # Check what entities are in the broker
# curl -X GET http://localhost:1026/ngsi-ld/v1/entities?local=true&limit=1000
#
# # now the python code you can use to insert some value in the context broker according to the data model
# # Version Warning!
# # This code is designed to work with the version 0.8 of pysmartdatamodels or later
# # to work with earlier version you need to replace the import instruction for
# # from pysmartdatamodels import pysmartdatamodels as sdm
#
#
import pysmartdatamodels as sdm
from pysmartdatamodels import pysmartdatamodels as sdm
import subprocess
serverUrl = "http://localhost:1026" # supposed that your broker is installed in localhost. Edit to match your configuration
serverUrl = "http://localhost:1026" # supposed that your broker is installed in localhost with 1026 as default port. Edit to match your configuration
dataModel = "MLModel"
subject = "dataModel.MachineLearning"
algorithm = "k-means"
Expand All @@ -59,8 +30,84 @@
# The next line creates the query for inserting this attribute in a NGSI-LD context broker if the attribute does not exist it creates it
print(sdm.update_broker(dataModel, subject, attribute, value, serverUrl=serverUrl, updateThenCreate=True))

print(" In case you have installed the orion-ld broker (see comments on the header of this program)")
print(" In case you have installed the a cntext broker (see comments below )")
print(" Execute this instruction to check that the entities has been inserted")
command = ['curl', '-X', 'GET', 'http://localhost:1026/ngsi-ld/v1/entities?local=true&limit=1000']
result = subprocess.run(command, capture_output=True, text=True)
print(result.stdout)

# This code allows you to install different context brokers in a linux system
#
# # ORION-LD
# # The manuals are here https://github.com/FIWARE/context.Orion-LD/tree/develop/doc/manuals-ld
#
# # INSTALL NGSI LD broker (OrionLD)
# sudo docker pull mongo:3.6
# sudo docker pull fiware/orion-ld
# sudo docker network create fiware_default
# sudo docker run -d --name=mongo-db --network=fiware_default --expose=27017 mongo:3.6 --bind_ip_all --smallfiles
# sudo docker run -d --name fiware-orionld -h orion --network=fiware_default -p 1026:1026 fiware/orion-ld -dbhost mongo-db
#
# # TO RELAUNCH (only if you have already installed a broker in the same machine)
# sudo docker stop fiware-orionld
# sudo docker rm fiware-orionld
# sudo docker stop mongo-db
# sudo docker rm mongo-db
# sudo docker network rm fiware_default
#
# # CHECK INSTANCES
# # Check the broker is running
# curl -X GET 'http://localhost:1026/version'
#
# # Check what entities are in the broker
# curl -X GET http://localhost:1026/ngsi-ld/v1/entities?local=true&limit=1000
#
# # STELLIO
#
# # INSTALL NGSI LD broker (Stellio)
# curl -O https://raw.githubusercontent.com/stellio-hub/stellio-context-broker/develop/docker-compose.yml -O https://raw.githubusercontent.com/stellio-hub/stellio-context-broker/develop/.env
# curl -o config/kafka/update_run.sh --create-dirs https://raw.githubusercontent.com/stellio-hub/stellio-context-broker/develop/config/kafka/update_run.sh && chmod u+x config/kafka/update_run.sh
# docker compose up -d
# # wait for some seconds for services to be up and running
#
# # TO RELAUNCH (only if you have already installed a broker in the same machine)
# docker compose down
#
# # CHECK INSTANCES
# curl -X GET 'http://localhost:8080/actuator/health'
# curl -X GET 'http://localhost:8080/search-service/actuator/health'
#
# # view the logs
# docker-compose logs -f --tail=100
#
# # SCORPIO
# sudo docker pull postgis/postgis
# sudo docker pull scorpiobroker/all-in-one-runner:java-latest
# sudo docker network create fiware_default
# sudo docker run -d --name postgres --network=fiware_default -h postgres -p 5432 -e POSTGRES_USER=ngb -e POSTGRES_PASSWORD=ngb -e POSTGRES_DB=ngb postgis/postgis
# sudo docker run -d --name scorpio -h scorpio --network=fiware_default -e DBHOST=postgres -p 9090:9090 scorpiobroker/all-in-one-runner:java-latest
#
# # TO RELAUNCH (only if you have already installed a broker in the same machine)
# sudo docker stop scorpio
# sudo docker rm scorpio
# sudo docker stop postgres
# sudo docker rm postgres
# sudo docker network rm fiware_default
#
# # CHECK INSTANCES
# # Check the broker is running
# # Release Info
# curl -X GET 'http://localhost:9090/q/info'
# # Health status of the broker
# curl -X GET 'http://localhost:9090/q/health'
#
# # Check what entities are in the broker
# curl -X GET http://localhost:1026/ngsi-ld/v1/entities?local=true&limit=1000
#
#
# # now the python code you can use to insert some value in the context broker according to the data model
# # Version Warning!
# # This code is designed to work with the version 0.8.0.1 of pysmartdatamodels or later
#
#
#

0 comments on commit fa7c9b3

Please sign in to comment.