Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix failling test for pandas 0.25 #15

Merged

Conversation

LionelMassoulard
Copy link
Collaborator

fix failling test for pandas 0.25 : change conversion sparse to dense when dtype == object

@gfournier gfournier merged commit 936475b into societe-generale:master Sep 23, 2019
gfournier pushed a commit that referenced this pull request Oct 1, 2019
* fix seed
* new test CdfScaler
gfournier pushed a commit that referenced this pull request Oct 1, 2019
* fix seed
* new test CdfScaler
gfournier added a commit that referenced this pull request Oct 1, 2019
* Bump version to 0.1.1

* Fix bug automl block search (#10)

* fix bug when no elements to iterator on

* remove useless space

* Categorical handling (WIP) (#9)

* add failing test for categorie

* - add a function that can replace categorical columns by object columns

- recognize 'category' as a CAT type of variable

* ajoute de get ride of categories

modifications des transfo numericalencoder et targetencoder
 ajout d un test de guess_type_of_variables

* - add a get_rid_of_categories in the fit_transform of targetencoder

- add test of targetencoder with categorical dtype
- add test of numericalencoder with categorical dtype

* modif de test_guesss_type_of_variable

* ajout d'un test permettant de vérifier que le numerical encoder ne transforme pas les colonnes catégorielles ayant des int en colonnes numériques.

pour l'instant, le test fail

* modification du code pour que le numericalencoder et le targetencoder fonctionnent correctement

ajout de tests

* modifs prenant en compte les comments de la pull request

* remaining changes for the pull request

* clean commit

* Dispatch groups (#7)

* Block Search + other (#2)

* add make_pipeline function (works like sklearn)

* fix type "_if_fitted" -> "_already_fitted"

*  * add handling of columns_to_encode == "--object--" in target encoder

 * corresponding test

* add Numerical encoder test for "columns_to_encode == '--object--' "

* expose command argument parser outside, to be able to add new arguments.

* change WordVectorizer in char mod distributions

+ fix bug in HyperRangeBetaInt

* change default behavior : encode "columns_to_encode == '--object--' "

* remove 'bug' (double return)

* allow text preprocessors to concat their inputs

* add 'RandomTrainTestCv' and 'IndexTrainCv' cv-like object.

* same api as a regular cv object ...
* ... but only one split

* add 'use_for_block_search' attribute + filter models based on that

* * add block search iterator

* automl config : models_to_keep_block_search

* fix typo in test

* ignore Warning in test

* move 'function_has_named_argument' from .transformers.model_wrapper to .tools.helper_functions

* cleanning

* dispatch and split the groups variable to the estimator

* add groups to methods + dispatch it to estimators within the pipeline

* test on cross validation and pipeline to check the passing of groups

* remove useless import

* remove useless

* fix X -> lastX

* debug help

* fix after merge

* make sur benchmark can be computed

* input np.inf  as well as np.nan

* spaces

* don't split and tokenize if not needed

* new tests auto-ml, when only numerical values

* allow scoring to return multiple values

* allow cross_validation to be in Parallel

# Conflicts:
#	aikit/cross_validation.py

* add a custom CV for groups

*  * froze init param

 * allow additionnal function to be computed

* read additionnal results

* allow guiding to be done on an "addtionnal metric"

* typo

* add name of excel print

* test if name of columns has change

* Clean load (#12)

* remove config.json

* fix loading

* remove nltk addtional path

* accelerate code using map and dict (#13)

* accelerate code using map and dict

* accelerate concatenation code

* Update categories

* * fix test new columns name (#15)

* fix seed
* new test CdfScaler

* Ml graph improve (#8)

* * new helpers function (merge node and subbranch search)

* fix ordering in graph from edges

* * generalize the notion of model graph

* change name representation

* Block Search + other (#2)

* add make_pipeline function (works like sklearn)

* fix type "_if_fitted" -> "_already_fitted"

*  * add handling of columns_to_encode == "--object--" in target encoder

 * corresponding test

* add Numerical encoder test for "columns_to_encode == '--object--' "

* expose command argument parser outside, to be able to add new arguments.

* change WordVectorizer in char mod distributions

+ fix bug in HyperRangeBetaInt

* change default behavior : encode "columns_to_encode == '--object--' "

* remove 'bug' (double return)

* allow text preprocessors to concat their inputs

* add 'RandomTrainTestCv' and 'IndexTrainCv' cv-like object.

* same api as a regular cv object ...
* ... but only one split

* add 'use_for_block_search' attribute + filter models based on that

* * add block search iterator

* automl config : models_to_keep_block_search

* fix typo in test

* ignore Warning in test

* fix type : TransformToBlockManager

* add number of output utils function

* spaces

* new tests with impossible graphs

* fix merged

* fix notebook error

* add list test

* remove useless import

* spaces

* fix docstring

* merge 2 loops

* remove duplicate edge

* add a few ploting functions (#14)

* add a few ploting functions

* add assert

* bump version 0.1.2

* DEV bump version

* doc typo (#16)

* Add matplotlib, seaborn to test requirements

* Fixes on dataset load from public URL

* Fix dataset path load unit test
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants