-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathDataset_YG.py
263 lines (232 loc) · 10.7 KB
/
Dataset_YG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# encoding: utf-8
import os
import pandas as pd
import numpy as np
import time
from collections import defaultdict as ddict
from collections import defaultdict
class KnowledgeGraphYG:
def __init__(self, data_dir, count=300, rev_set=0):
self.data_dir = data_dir
self.entity_dict = {}
self.entities = []
self.relation_dict = {}
self.n_entity = 0
self.n_relation = 0
self.training_triples = [] # list of triples in the form of (h, t, r)
self.validation_triples = []
self.test_triples = []
self.training_facts = []
self.validation_facts = []
self.test_facts = []
self.n_training_triple = 0
self.n_validation_triple = 0
self.n_test_triple = 0
self.n_time = 0
self.start_year= -500
self.end_year = 3000
self.year_class=[]
self.year2id = dict()
self.rev_set = rev_set
self.fact_count = count
self.to_skip_final = {'lhs': {}, 'rhs': {}}
'''load dicts and triples'''
self.time_list()
self.load_dicts()
self.load_triples()
self.load_filters()
'''construct pools after loading'''
# self.training_triple_pool = set(self.training_triples)
# self.golden_triple_pool = set(self.training_triples) | set(self.validation_triples) | set(self.test_triples)
def load_dicts(self):
entity_dict_file = 'entity2id.txt'
relation_dict_file = 'relation2id.txt'
print('-----Loading entity dict-----')
entity_df = pd.read_table(os.path.join(self.data_dir, entity_dict_file), header=None)
self.entity_dict = dict(zip(entity_df[0], entity_df[1]))
self.n_entity = len(self.entity_dict)
self.entities = list(self.entity_dict.values())
print('#entity: {}'.format(self.n_entity))
print('-----Loading relation dict-----')
relation_df = pd.read_table(os.path.join(self.data_dir, relation_dict_file), header=None)
self.relation_dict = dict(zip(relation_df[0], relation_df[1]))
self.n_relation = len(self.relation_dict)
if self.rev_set>0: self.n_relation *= 2
print('#relation: {}'.format(self.n_relation))
def time_list(self):
training_file = 'train.txt'
validation_file = 'valid.txt'
test_file = 'test.txt'
triple_file = 'triple2id.txt'
training_df = pd.read_table(os.path.join(self.data_dir, training_file), header=None)
training_df = np.array(training_df).tolist()
validation_df = pd.read_table(os.path.join(self.data_dir, validation_file), header=None)
validation_df = np.array(validation_df).tolist()
test_df = pd.read_table(os.path.join(self.data_dir, test_file), header=None)
test_df = np.array(test_df).tolist()
# triple_df = pd.read_table(os.path.join(self.data_dir, triple_file), header=None)
# triple_df = np.array(triple_df).tolist()
triple_df = np.concatenate([training_df,validation_df,test_df],axis=0)
n=0
year_list=[]
for triple in triple_df:
n+=1
if triple[3][0]=='-':
start = -int(triple[3].split('-')[1])
year_list.append(start)
else:
start = triple[3].split('-')[0]
if start =='####':
start = self.start_year
else:
start = start.replace('#', '0')
start = int(start)
year_list.append(start)
if triple[4][0]=='-':
end = -int(triple[4].split('-')[1])
year_list.append(end)
else:
end = triple[4].split('-')[0]
if end =='####':
end = self.end_year
else:
end = end.replace('#', '0')
end = int(end)
year_list.append(end)
# for i in range(start,end):
# year_list.append(i)
year_list.sort()
freq=ddict(int)
for year in year_list:
freq[year]=freq[year]+1
year_class=[]
count=0
for key in sorted(freq.keys()):
count += freq[key]
if count>=self.fact_count:
year_class.append(key)
count=0
year_class[-1]=year_list[-1]
year2id = dict()
prev_year = year_list[0]
i = 0
for i, yr in enumerate(year_class):
year2id[(prev_year, yr)] = i
# if i>2:
prev_year = yr + 1
self.year2id=year2id
self.year_class = year_class
self.n_time = len(self.year2id.keys())
def load_triples(self):
training_file = 'train.txt'
validation_file = 'valid.txt'
test_file = 'test.txt'
print('-----Loading training triples-----')
training_df = pd.read_table(os.path.join(self.data_dir, training_file), header=None)
training_df = np.array(training_df).tolist()
for triple in training_df:
if triple[3].split('-')[0] == '####':
start=self.start_year
start_idx = 0
elif triple[3][0] == '-':
start=-int(triple[3].split('-')[1].replace('#', '0'))
elif triple[3][0] != '-':
start = int(triple[3].split('-')[0].replace('#','0'))
if triple[4].split('-')[0] == '####':
end = self.end_year
end_idx = self.n_time-1
elif triple[4][0] == '-':
end =-int(triple[4].split('-')[1].replace('#', '0'))
elif triple[4][0] != '-':
end = int(triple[4].split('-')[0].replace('#','0'))
for key, time_idx in sorted(self.year2id.items(), key=lambda x:x[1]):
if start>=key[0] and start<=key[1]:
start_idx = time_idx
if end>=key[0] and end<=key[1]:
end_idx = time_idx
self.training_triples.append([triple[0],triple[2],triple[1],start_idx,end_idx])
self.training_facts.append([triple[0],triple[2],triple[1],triple[3],triple[4]])
if self.rev_set>0: self.training_triples.append([triple[2],triple[0],triple[1]+self.n_relation//2,start_idx,end_idx])
# for day_idx in range(start_idx,end_idx+1):
# try:
# self.training_triples.append([triple[0],triple[2],triple[1],day_idx])
# except KeyError:
# continue
self.n_training_triple = len(self.training_triples)
print('#training triple: {}'.format(self.n_training_triple))
print('-----Loading validation triples-----')
validation_df = pd.read_table(os.path.join(self.data_dir, validation_file), header=None)
validation_df = np.array(validation_df).tolist()
for triple in validation_df:
if triple[3].split('-')[0] == '####':
start=self.start_year
start_idx = 0
elif triple[3][0] == '-':
start=-int(triple[3].split('-')[1].replace('#', '0'))
elif triple[3][0] != '-':
start = int(triple[3].split('-')[0].replace('#','0'))
if triple[4].split('-')[0] == '####':
end = self.end_year
end_idx = self.n_time-1
elif triple[4][0] == '-':
end =-int(triple[4].split('-')[1].replace('#', '0'))
elif triple[4][0] != '-':
end = int(triple[4].split('-')[0].replace('#','0'))
for key, time_idx in sorted(self.year2id.items(), key=lambda x:x[1]):
if start>=key[0] and start<=key[1]:
start_idx = time_idx
if end>=key[0] and end<=key[1]:
end_idx = time_idx
self.validation_triples.append([triple[0],triple[2],triple[1],start_idx,end_idx])
self.validation_facts.append([triple[0],triple[2],triple[1],triple[3],triple[4]])
# for day_idx in range(start_idx,end_idx+1):
# try:
# self.validation_triples.append([triple[0],triple[2],triple[1],day_idx])
# except KeyError:
# continue
self.n_validation_triple = len(self.validation_triples)
print('#validation triple: {}'.format(self.n_validation_triple))
print('-----Loading test triples------')
test_df = pd.read_table(os.path.join(self.data_dir, test_file), header=None)
test_df = np.array(test_df).tolist()
for triple in test_df:
if triple[3].split('-')[0] == '####':
start=self.start_year
start_idx = 0
elif triple[3][0] == '-':
start=-int(triple[3].split('-')[1].replace('#', '0'))
elif triple[3][0] != '-':
start = int(triple[3].split('-')[0].replace('#','0'))
if triple[4].split('-')[0] == '####':
end = self.end_year
end_idx = self.n_time-1
elif triple[4][0] == '-':
end =-int(triple[4].split('-')[1].replace('#', '0'))
elif triple[4][0] != '-':
end = int(triple[4].split('-')[0].replace('#','0'))
for key, time_idx in sorted(self.year2id.items(), key=lambda x:x[1]):
if start>=key[0] and start<=key[1]:
start_idx = time_idx
if end>=key[0] and end<=key[1]:
end_idx = time_idx
self.test_triples.append([triple[0],triple[2],triple[1],start_idx,end_idx])
self.test_facts.append([triple[0],triple[2],triple[1],triple[3],triple[4]])
# for day_idx in range(start_idx,end_idx+1):
# try:
# self.test_triples.append([triple[0],triple[2],triple[1],day_idx])
# except KeyError:
# continue
self.n_test_triple = len(self.test_triples)
print('#test triple: {}'.format(self.n_test_triple))
def load_filters(self):
print("creating filtering lists")
to_skip = {'lhs': defaultdict(set), 'rhs': defaultdict(set)}
facts_pool = [self.training_facts,self.validation_facts,self.test_facts]
for facts in facts_pool:
for fact in facts:
to_skip['lhs'][(fact[1], fact[2],fact[3],fact[4])].add(fact[0]) # left prediction
to_skip['rhs'][(fact[0], fact[2],fact[3],fact[4])].add(fact[1]) # right prediction
for kk, skip in to_skip.items():
for k, v in skip.items():
self.to_skip_final[kk][k] = sorted(list(v))
print("data preprocess completed")