Skip to content

The source code of ISWC2020 paper "Temporal Knowledge Graph completion based on time series Gaussian embedding " and COLING2020 paper "TeRo: A Time-aware Knowledge Graph Embedding via Temporal Rotation "

License

Notifications You must be signed in to change notification settings

soledad921/ATISE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

README

This is the source code of our papers:

ISWC2020 paper: "Temporal Knowledge Graph Completion based on Time Series Gaussian Embedding"

COLING2020 paper: "TeRo: A Time-aware Knowledge Graph Embedding via Temporal Rotation"


Implementation Environment:

  • Python 3.7, Pytorch 1.0, CUDA 8.0, Anaconda 4.8.3
  • Python 3.7, Pytorch 1.4, CUDA 9.1, Anaconda 4.5.11

Dataset:

Usage:

  • Install dependencies and put dataset folders here

  • model.py contains PyTorch(1.x) based implementation of our proposed models

  • To reproduce the reported results of our models, use the following commands:

    python Main.py --model TERO --dataset icews14 --dim 500 --lr 0.1 --gamma 110 --loss logloss --eta 10 --timedisc 0 --cuda True --gran 1
    
    python Main.py --model TERO --dataset icews05-15 --dim 500 --lr 0.1 --gamma 120 --loss logloss --eta 10 --timedisc 0 --cuda True --gran 2
    
    python Main.py --model TERO --dataset yago --dim 500 --lr 0.1 --gamma 50 --loss marginloss --timedisc 2 --cuda True --gran 1 --thre 100
    
    python Main.py --model TERO --dataset wikidata --dim 500 --lr 0.3 --gamma 20 --loss logloss --timedisc 2 --cuda True --gran 1 --thre 300
    
    
    
    python Main.py --model ATISE --dataset icews14 --dim 500 --lr 0.00003 --gamma 120 --loss logloss --timedisc 0 --cuda True --gran 3 --cmin 0.003
    
    python Main.py --model ATISE --dataset icews05-15 --dim 500 --lr 0.00003 --gamma 100 --loss logloss --timedisc 0 --cuda True --gran 30 --cmin 0.003
    
    python Main.py --model ATISE --dataset yago --dim 500 --lr 0.00003 --gamma 1 --loss logloss --timedisc 1 --cuda True --gran 1 --cmin 0.005 --thre 300
    
    python Main.py --model ATISE --dataset wikidata --dim 500 --lr 0.00003 --gamma 1 --loss logloss --timedisc 1 --cuda True --gran 1 --cmin 0.005 --thre 300
    
  • Parameters and Some of the important available options include:

      task: [LinkPrediction,TimePrediction]	(default:LinkPrediction)	
      model:  [ATISE,TERO]   (default: ATISE)
      dataset: [icews14,icews05-15,yago,wikidata] (default: icews14)
      max_epoch: (shoud be >500) (default: 5000)
      dim: 	number of dimension (default: 500)
      batch: 	batchsize (default:512)
      lr: 	learning rate (default:0.1)
      gamma: 	margin for translational models (default:1)
      eta:	ratio of negative samples over the positives (default: 10)
      timedisc: the method used for handling facts involving time intervals: 0 means no time intervals; 1 means to discretize time intervals into time points; 2 means to use dual relation embeddings (default: 0)
      cuda:   whether to use cuda devices (default: True)
      loss: use which loss function for optimization: logloss means logistic loss function; marginloss means margin rank loss (default: logloss)
      cmin: minimum threshold of covariance matrices of ATISE (default: 0.005)
      gran: the time unit of icews datasets (default: 1)
      thre: the mini threshold of time classes in yago and wikidata (default: 1)
    
  • Results will be printed out and stored in the corresponding dataset folders.

Citation

If you use the codes, please cite the following papers:

  • ATiSE:

    @inproceedings{ATiSE,
    title={Temporal knowledge graph completion based on time series gaussian embedding},
    author={Xu, Chenjin and Nayyeri, Mojtaba and Alkhoury, Fouad and Yazdi, Hamed and Lehmann, Jens},
    booktitle={International Semantic Web Conference},
    pages={654--671},
    year={2020},
    organization={Springer}
    }
    
  • TeRo:

    @inproceedings{TERO,
      title = "{T}e{R}o: A Time-aware Knowledge Graph Embedding via Temporal Rotation",
      author = "Xu, Chengjin  and
        Nayyeri, Mojtaba  and
        Alkhoury, Fouad  and
        Shariat Yazdi, Hamed  and
        Lehmann, Jens",
      booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
      month = dec,
      year = "2020",
      address = "Barcelona, Spain (Online)",
      publisher = "International Committee on Computational Linguistics",
      url = "https://aclanthology.org/2020.coling-main.139",
      doi = "10.18653/v1/2020.coling-main.139",
      pages = "1583--1593"
    }
    

License

ATISE is MIT licensed, as found in the LICENSE file.

About

The source code of ISWC2020 paper "Temporal Knowledge Graph completion based on time series Gaussian embedding " and COLING2020 paper "TeRo: A Time-aware Knowledge Graph Embedding via Temporal Rotation "

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages