Skip to content

solegalli/hyperparameter-optimization

Folders and files

NameName
Last commit message
Last commit date

Latest commit

3ad6a16 · Sep 24, 2024

History

26 Commits
Apr 27, 2024
Sep 24, 2024
Sep 24, 2024
Sep 24, 2024
Sep 24, 2024
Sep 24, 2024
Sep 24, 2024
Sep 24, 2024
Sep 24, 2024
Sep 24, 2024
Sep 24, 2024
Jul 27, 2023
Sep 24, 2024
Mar 4, 2022
Sep 24, 2024
May 5, 2021
Jan 9, 2024
Mar 4, 2022
Sep 24, 2024

Repository files navigation

PythonVersion License https://github.com/solegalli/hyperparameter-optimization/blob/master/LICENSE Sponsorship https://www.trainindata.com/

Hyperparameter tuning for Machine Learning - Code Repository

Launched: May, 2021

Updated: September, 2024

Actively maintained.

Links

Table of Contents

  1. Metrics

    1. Classification (accuracy, precision, recall, roc-auc, etc)
    2. Regression (MSE, RMSE, R2, etc)
  2. Cross-Validation

    1. K-fold, LOOCV, LPOCV, Stratified CV
    2. Group CV and variants
    3. CV for time series
    4. Nested CV
  3. Basic Search Algorithms

    1. Manual Search
    2. Grid Search
    3. Random Search
  4. Bayesian Optimization

    1. with Gaussian Processes
    2. with Random Forests (SMAC) and GBMs
    3. with Parzen windows (Tree-structured Parzen Estimators or TPE)
    4. Simulated annealing
  5. Multi-fidelity Optimization

    1. Successive Halving
    2. Hyperband
  6. Python tools

    1. Scikit-learn
    2. Scikit-optimize
    3. Hyperopt
    4. Optuna

Links