Skip to content
/ SIOD Public

SIOD: Single Instance Annotated Per Category Per Image for Object Detection (单实例标注目标检测)

License

Notifications You must be signed in to change notification settings

solicucu/SIOD

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Main Results

Detector Task $AP@\mathbb{S}$ $AP@\mathbb{S}_0$ $AP@\mathbb{S}_3$ $AP@\mathbb{S}_5$ $AP@\mathbb{S}_7$ $AP@\mathbb{S}_9$
CenterNet-Res18 FSOD 17.3 28.1 24.0 17.1 8.8 1.5
CenterNet-Res18 SIOD(base) 13.9 25.1 18.5 12.3 6.1 1.4
CetnerNet-Res18 SIOD(DMiner) 16.8(+2.9) 26.6(+1.5) 22.4(+3.9) 17.1(+4.8) 9.4(+3.3) 2.1(+0.7)
CenterNet-Res101 FSOD 22.6 34.2 30.3 23.6 13.6 3.1
CenterNet-Res101 SIOD(base) 15.1 27.8 20.9 13.3 6.1 1.1
CenterNet-Res101 SIOD(DMiner) 19.7(+4.6) 29.8(+2.0) 26.0(+5.1) 20.5(+7.2) 12.2(+6.1) 2.9(+1.8)
  • Keep1_COCO2017_Train: keep1_instances_train2017.json

  • Semi-supervised annotation which has equivalent instance annotations to Keep1_COCO2017_Train: mark_semi_instances_train2017.json. (For Table 2)

    We add a new field("keep") to the image infomation in annotation file, where keep=1 indicates the image belongs to labeled part and keep=0 indicates the image belongs to unlabeled part.

Preparations

1. pip install -r requirements.txt 
2. install pytorch=1.7.0(higher version has some problems in following installation of dcnv2) 
3. install dcnv2
   cd src/lib/models/networks/DCNv2
   sh make.sh 
4. install cocoapi
   cd src/lib/datasets/dataset/cocoapi/
   sh install.sh 
5. install nms
   cd src/lib/external
   make 
6. create soft link for the data
   vim link.sh
   sh link.sh 

Training

Take CenterNet-Res18 for example:

  • Directly train the centernet under SIOD setup.

    sh base_resdcn18_train.sh
  • Train the centernet equipped with SPLG or PGCL.

    # SPLG
    sh plg_resdcn18_train.sh
    # PGCL 
    gcl_resdcn18_train.sh
    
  • Train the centernet equipped with DMiner.

    dminer_resdcn18_train.sh
    or 
    all_resdcn18_train.sh
    

Evaluation

Evaluate the detector with new Score-aware Detection Evaluation Protocol.

# modify the parameter "load_model" accordingly
sh test_resdcn18.sh

Visualization

Prepare some images and modified visualize.sh accordingly.

sh visualize.sh

About

SIOD: Single Instance Annotated Per Category Per Image for Object Detection (单实例标注目标检测)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published